Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Eur Ceram Soc ; 35(9): 2679-2683, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26339126

RESUMEN

In this contribution, a low-pressure/low-temperature casting technique for the preparation of novel free-standing macrocellular polymer-derived ceramic support structures is presented. Preceramic polymers (polycarbosilane and poly(vinyl)silazane) are combined with sacrificial porogens (ultra-high molecular weight polyethylene microbeads) to yield porous ceramic materials in the Si-C or Si-C-N systems, exhibiting well-defined pore structures after thermal conversion. The planar-disc-type specimens were found to exhibit biaxial flexural strengths of up to 60 MPa. In combination with their observed permeability characteristics, the prepared structures were found to be suitable for potential applications in filtration, catalysis, or membrane science.

2.
Adv Mater ; 36(11): e2307554, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37906971

RESUMEN

Fused deposition modeling (FDM), traditionally reserved for thermoplastics, is modified here with a granule-based extrusion head to be extended to advanced nonoxide ceramics via a straightforward design strategy that considers the shaping opportunities and the chemical richness offered by preceramic polymers. Specifically, 3D near-net-shape stoichiometric silicon carbide (SiC) objects are designed by manipulating the key features of a commercially available polycarbosilane (fusibility, high carbon content, relatively high SiC yield). In the early stage of the process, the carbon-rich polycarbosilane is first mixed with Si and SiC fillers and then thermolyzed at 120 °C to increase polymer branching while offering tailored rheological properties during the subsequent extrusion process at 90 °C and adequate shape retention once extruded. This allows for the design of tailored and complex 3D complex polycarbosilane-based architectures with features down to 400 µm. Polymer-based parts are further converted into 3D stoichiometric SiC objects with quasi-near-net-shape-a volume shrinkage reduced to 9.1% is measured-by heat treatment at a temperature as low as 1400 °C (argon flow). Given the flexibility to tune the preceramic polymer chemical and rheological properties, a new combined design approach is leveraged to generate bespoke advanced ceramics with a high freedom in geometry complexity.

3.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38006164

RESUMEN

The thermal decomposition product of magnesium hydroxide (MH) is magnesium oxide (MgO), which serves as the foundational material for fireproof layer construction in the condensed phase. However, the weak interaction force between particles of MgO generated by thermal decomposition leads to the insufficient strength and poor adhesion ability of the fireproof layer. The fireproof layer was easily damaged and detached in this study, resulting in the low flame-retardant efficiency of MH. In this work, polycarbosilane (PCS) and divinyl benzene (DVB) were used to modify MH, and EVA/MH/PCS/DVB composites were made via melt blending. The flame-retardant properties of EVA/MH/PCS/DVB were evaluated using the limiting oxygen index (LOI), vertical combustion (UL-94), and a cone calorimeter (CONE). The thermal stability of the composites and flame retardants was analyzed using a thermogravimetric analyzer. The char layer structure was observed and analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The results indicate that the LOI of the EVA/MH/PCS/DVB with 50 wt.% flame retardants in total was as high as 65.1, which increased by 160% in comparison with EVA/MH. Furthermore, the total smoke production (TSP) of the EVA/MH/PCS/DVB composite decreased by 22.7% compared to EVA/MH/PCS; the thermal stability of the MH/PCS/DVB and EVA/MH/PCS/DVB improved to some extent; and the compact residual char after the combustion of EVA/MH/PCS/DVB had fewer cracks due to the adhesive effect induced by PCS/DVB.

4.
Materials (Basel) ; 14(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073650

RESUMEN

Carbon nanotubes (CNTs) coated with SiC coating was successfully prepared by pyrolysis of polycarbosilane (PCS) used as a precursor. The function of pyrolysis temperature on the oxidation resistance and the dielectric properties of CNTs/SiC were studied in X-band. The results demonstrate that the obtained dense SiC film can prevent the oxidation of CNTs when the pyrolysis temperature reaches 600 °C. Correspondingly, after heat treatment is at 400 °C for 200 h, the mass loss of P-600 is less than 1.86%, and the real and imaginary parts of the dielectric constant nearly keep constant (ε' from 14.2 to 14, and ε″ from 5.7 to 5.5). SiC-coated CNTs have a better oxidation resistance than pristine CNTs. Therefore, this work, with a facile preparation process, enhances the oxidation resistance of CNTs at high temperature for a long time and maintains a stable dielectric property, which means CNTs/SiC composites can be good candidates for applications in the field of high-temperature absorbers.

5.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35012058

RESUMEN

A polymer ceramic precursor material-polycarbosilane (PCS)-was used as a synergistic additive with magnesium hydroxide (MH) in flame-retardant ethylene-vinyl acetate copolymer (EVA) composites via the melt-blending method. The flame-retardant properties of EVA/MH/PCS were evaluated by the limiting oxygen index (LOI) and a cone calorimeter (CONE). The results revealed a dramatic synergistic effect between PCS and MH, showing a 114% increase in the LOI value and a 46% decrease in the peak heat release rate (pHRR) with the addition of 2 wt.% PCS to the EVA/MH composite. Further study of the residual char by scanning electron microscopy (SEM) proved that a cohesive and compact char formed due to the ceramization of PCS and close packing of spherical magnesium oxide particles. Thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG-FTIR) and pyrolysis-gas chromatography coupled with mass spectrometry (Py-GC/MS) were applied to investigate the flame-retardant mechanism of EVA/MH/PCS. The synergistic effect between PCS and MH exerted an impact on the thermal degradation products of EVA/MH/PCS, and acetic products were inhibited in the gas phase.

6.
Membranes (Basel) ; 10(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992911

RESUMEN

Solar hydrogen production via the photoelectrochemical water-splitting reaction is attractive as one of the environmental-friendly approaches for producing H2. Since the reaction simultaneously generates H2 and O2, this method requires immediate H2 recovery from the syngas including O2 under high-humidity conditions around 50 °C. In this study, a supported mesoporous γ-Al2O3 membrane was modified with allyl-hydrido-polycarbosilane as a preceramic polymer and subsequently heat-treated in Ar to deliver a ternary SiCH organic-inorganic hybrid/γ-Al2O3 composite membrane. Relations between the polymer/hybrid conversion temperature, hydrophobicity, and H2 affinity of the polymer-derived SiCH hybrids were studied to functionalize the composite membranes as H2-selective under saturated water vapor partial pressure at 50 °C. As a result, the composite membranes synthesized at temperatures as low as 300-500 °C showed a H2 permeance of 1.0-4.3 × 10-7 mol m-2 s-1 Pa-1 with a H2/N2 selectivity of 6.0-11.3 under a mixed H2-N2 (2:1) feed gas flow. Further modification by the 120 °C-melt impregnation of low molecular weight polycarbosilane successfully improved the H2-permselectivity of the 500 °C-synthesized composite membrane by maintaining the H2 permeance combined with improved H2/N2 selectivity as 3.5 × 10-7 mol m-2 s-1 Pa-1 with 36. These results revealed a great potential of the polymer-derived SiCH hybrids as novel hydrophobic membranes for purification of solar hydrogen.

7.
ACS Appl Mater Interfaces ; 11(13): 12993-13002, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30869854

RESUMEN

Diversified SiCN fibers with gradient-SiC xN y phase in the interfacial regions between the major phases of carbon-rich SiC phase and Si3N4 phase were prepared via nanochannel diffusion-controlled nitridation of polycarbosilane fibers under different NH3 flow rates. The obtained fibers with excellent mechanical properties showed a different nanostructure and improved high-temperature behavior compared with polysilazane- and polysilylcarbodiimide-derived SiCN ceramics. The enhanced high-temperature properties could be contributed to the inhibition of carbothermal reduction of the Si3N4 phase by the gradient-SiC xN y phase in the interfacial region between the Si3N4 phase and carbon-rich SiC phase. Meanwhile, a suitable amount of interfacial SiC xN y phase as well as the fine distributed microstructure can be helpful to inhibit the high-temperature crystallization of both the SiC phase and Si3N4 phase. Additionally, a nanostructural model has been proposed to understand the effect of interfacial gradient-SiC xN y phase and compositional-dependent high-temperature behavior of obtained SiCN fibers. Our findings provide a novel strategy to prepare SiCN-based ceramic materials with excellent high-temperature stabilities, which we expect to possess great potential in structural and (multi)functional applications at high temperatures and under harsh environments.

8.
J Colloid Interface Sci ; 470: 123-131, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26939076

RESUMEN

A strategy for a simple dispersion of commercial multi-walled carbon nanotubes (MWCNTs) using two organosilicones, polycarbosilane SMP10 and polysilazane Ceraset PSZ20, in organic solvents such as cyclohexane, tetrahydrofuran (THF), m-xylene and chloroform is presented. In just a few minutes the combined action of sonication and the presence of Pt(0) catalyst is sufficient to obtain a homogeneous suspension, thanks to the rapid hydrosilylation reaction between SiH groups of the polymer and the CNT sidewall. The as-produced suspensions have a particle size distribution <1µm and remain unchanged after several months. A maximum of 0.47 and 0.50mg/ml was achieved, respectively, for Ceraset in THF and SMP10 in chloroform. Possible applications as polymeric and ceramic thin films or aerogels are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA