Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; : e14489, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186819

RESUMEN

PURPOSE: To evaluate the feasibility of an open-source, semi-automated, and reproducible vertex placement tool to improve the efficiency of lattice radiotherapy (LRT) planning. We used polymer gel dosimetry with a Cone Beam CT (CBCT) readout to commission this LRT technique. MATERIAL AND METHODS: We generated a volumetric modulated arc therapy (VMAT)-based LRT plan on a 2 L NIPAM polymer gel dosimeter using our Eclipse Acuros version 15.6 AcurosXB beam model, and also recalculated the plan with a pre-clinical Acuros v18.0 dose calculation algorithm with the enhanced leaf modelling (ELM). With the assistance of the MAAS-SFRThelper software, a lattice vertex diameter of 1.5 cm and center-to-center spacing of 3 cm were used to place the spheres in a hexagonal, closed packed structure. The verification plan included four gantry arcs with 15°, 345°, 75°, 105° collimator angles. The spheres were prescribed 20 Gy to 50% of their combined volume. The 6 MV Flattening Filter Free beam energy was used to deliver the verification plan. The dosimetric accuracy of the LRT delivery was evaluated with 1D dose profiles, 2D isodose maps, and a 3D global gamma analysis. RESULTS: Qualitative comparisons between the 1D dose profiles of the Eclipse plan and measured gel showed good consistency at the prescription dose mark. The average diameter measured 13.3 ± 0.2 mm (gel for v15.6), 12.6 mm (v15.6 plan), 13.1 ± 0.2 mm (gel for v18.0), and 12.3 mm (v18.0 plan). 3D gamma analysis showed that all gamma pass percent were > 95% except at 1% and 2% at the 1 mm distance to agreement criteria. CONCLUSION: This study presents a novel application of gel dosimetry in verifying the dosimetric accuracy of LRT, achieving excellent 3D gamma results. The treatment planning was facilitated by publicly available software that automatically placed the vertices for consistency and efficiency.

2.
Molecules ; 29(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398649

RESUMEN

A new ionic liquid modified polymer gel containing methylimidazolium groups (poly(MIA)) is proposed as a sorbent for the separation and enrichment of trace inorganic and organic arsenic species in surface waters. The poly(MIA) was synthesized by chemical modification of polymeric precursor using post-polymerization modification of poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate). The composition, structure, morphology, and surface properties of the prepared particles were characterized using elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption-desorption measurements. Optimization experiments showed that at pH 8, monomethylarsonic acid (MMAs), dimethylarsinic acid (DMAs), and As(V) were completely retained on the poly(MIA), while the sorption of As(III) was insignificant. The desorption experiments revealed that due to the weaker binding of organic arsenic species, selective elution with 1 mol/L acetic acid for MMAs + DMAs, followed by elution with 2 mol/L hydrochloric acid for As(V), ensured their quantitative separation. The adsorption kinetic and mechanism were defined. The analytical procedure for As(III), As(V), MMAs, and DMAs determination in surface waters was developed and validated through the analysis of certified reference material.

3.
J Xray Sci Technol ; 32(3): 751-764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217634

RESUMEN

OBJECTIVE: It seems that dose rate (DR) and photon beam energy (PBE) may influence the sensitivity and response of polymer gel dosimeters. In the current project, the sensitivity and response dependence of optimized PASSAG gel dosimeter (OPGD) on DR and PBE were assessed. MATERIALS AND METHODS: We fabricated the OPGD and the gel samples were irradiated with various DRs and PBEs. Then, the sensitivity and response (R2) of OPGD were obtained by MRI at various doses and post-irradiation times. RESULTS: Our analysis showed that the sensitivity and response of OPGD are not affected by the evaluated DRs and PBEs. It was also found that the dose resolution values of OPGD ranged from 9 to 33 cGy and 12 to 34 cGy for the evaluated DRs and PBEs, respectively. Additionally, the data demonstrated that the sensitivity and response dependence of OPGD on DR and PBE do not vary over various times after the irradiation. CONCLUSIONS: The findings of this research project revealed that the sensitivity and response dependence of OPGD are independent of DR and PBE.


Asunto(s)
Geles , Imagen por Resonancia Magnética , Fotones , Dosímetros de Radiación , Imagen por Resonancia Magnética/métodos , Geles/química , Polímeros/química , Radiometría/métodos , Radiometría/instrumentación
4.
Molecules ; 28(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241984

RESUMEN

Intelligent polymer gel, as a popular polymer material, has been attracting much attention for its application. An intelligent polymer gel will make corresponding changes to adapt to the environment after receiving stimuli; therefore, an intelligent polymer gel can play its role in many fields. With the research on intelligent polymer gels, there is great potential for applications in the fields of drug engineering, molecular devices, and biomedicine in particular. The strength and responsiveness of the gels can be improved under different configurations in different technologies to meet the needs in these fields. There is no discussion on the application of intelligent polymer gels in these fields; therefore, this paper reviews the research progress of intelligent polymer gel, describes the important research of some intelligent polymer gel, summarizes the research progress and current situation of intelligent polymer gel in the environment of external stimulation, and discusses the performance and future development direction of intelligent polymer gel.

5.
J Xray Sci Technol ; 31(4): 825-836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37212060

RESUMEN

BACKGROUND: Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated. OBJECTIVE: This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies. METHODS: The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days. RESULTS: The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times. CONCLUSION: The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.


Asunto(s)
Polímeros , Dosímetros de Radiación , Electrones , Geles , Radiometría/métodos , Imagen por Resonancia Magnética
6.
Angew Chem Int Ed Engl ; 61(2): e202110695, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34708895

RESUMEN

Although covalent organic frameworks (COFs) with a graphene-like structure present unique chemical and physical properties, they are essentially insoluble and infusible crystalline powders with poor processability, hindering their further practical applications. How to improve the processability of COF materials is a major challenge in this field. In this contribution, we proposed a general side-chain engineering strategy to construct a gel-state COF with high processability. This method takes advantages of large and soft branched alkyl side chains as internal plasticizers to achieve the gelation of the COF. We systematically studied the influence of the length of the side chain on the COF gel formation. Benefitting from their machinability and flexibility, this novel COF gel can be easily processed into gel-type electrolytes with specific shape and thickness, which were further applied to assemble lithium-ion batteries that exhibited high cycling stability.

7.
Angew Chem Int Ed Engl ; 61(16): e202116094, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35129254

RESUMEN

The self-assembly of a well-defined and astutely designed, low-molecular weight gelator (LMWG) based linker with a suitable metal ion is a promising method for preparing photocatalytically active coordination polymer gels. Here, we report the design, synthesis, and gelation behaviour of a tetrapodal LMWG based on a porphyrin core connected to four terpyridine units (TPY-POR) through amide linkages. The self-assembly of TPY-POR LMWG with RuII ions results in a Ru-TPY-POR coordination polymer gel (CPG), with a nanoscroll morphology. Ru-TPY-POR CPG exhibits efficient CO2 photoreduction to CO (3.5 mmol g-1 h-1 ) with >99 % selectivity in the presence of triethylamine (TEA) as a sacrificial electron donor. Interestingly, in the presence of 1-benzyl-1,4-dihydronicotinamide (BNAH) with TEA as the sacrificial electron donor, the 8e- /8H+ photoreduction of CO2 to CH4 is realized with >95 % selectivity (6.7 mmol g-1 h-1 ). In CPG, porphyrin acts as a photosensitizer and covalently attached [Ru(TPY)2 ]2+ acts as a catalytic center as demonstrated by femtosecond transient absorption (TA) spectroscopy. Further, combining information from the in situ DRIFT spectroscopy and DFT calculation, a possible reaction mechanism for CO2 reduction to CO and CH4 was outlined.

8.
Rep Pract Oncol Radiother ; 27(2): 226-234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299382

RESUMEN

Background: The presence of heterogeneity within the radiation field increases the challenges of small field dosimetry. In this study, the performance of MAGIC polymer gel was evaluated in the dosimetry of small fields beyond bone heterogeneity. Materials and methods: Circular field sizes of 5, 10, 20 and 30 mm were used and Polytetrafluoroethylene with density of 2.2 g/cm3 was used as the bone equivalent material. The PDD curves, beam profiles, and penumbra widths were measured using MAGIC polymer gel, EBT2 film, and Monte Carlo simulation. Results: The maximum differences between MAGIC and EBT2 are 6.1, 4.7, 2.4, and 2.2 for PDD curves at 5, 10, 20, and 30 mm circular fields, respectively. The dose differences and distance to agreement between MAGIC and MC were within 1.89%/0.46 mm, 1.66%/0.43 mm, 1.28%/0.77 mm, and 1.31%/0.81 mm for beam profile values behind bone heterogeneity at 5, 10, 20, and 30 mm field sizes, respectively. Conclusion: The results presented that the MAGIC polymer gel dosimeter is a proper instrument for dosimetry beyond high density heterogeneity.

9.
Sensors (Basel) ; 21(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34884043

RESUMEN

Polymer gel sensors on 96-well plates were successfully used to detect four different multi-explosives, including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrite, and perchlorate. The products of reactions between the explosives and the polymer gel sensors were digitally captured, and the images were analyzed by a developed Red-Green-Blue (RGB) analyzer program on a notebook computer. RGB color analysis provided the basic color data of the reaction products for the quantification of the explosives. The results provided good linear range, sensitivity, limit of detection, limit of quantitation, specificity, interference tolerance, and recovery. The method demonstrated great potential to detect explosives by colorimetric analysis of digital images of samples on 96-well plates. It is possible to apply the proposed method for quantitative on-site field screening of multi-explosives.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Colorimetría , Dinitrobencenos , Polímeros
10.
Molecules ; 25(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352999

RESUMEN

Ionic liquids are potential alternative electrolytes to the more conventional solid-state options under investigation for future energy storage solutions. This review addresses the utilization of IL electrolytes in energy storage devices, particularly pyrrolidinium-based ILs. These ILs offer favorable properties, such as high ionic conductivity and the potential for high power drain, low volatility and wide electrochemical stability windows (ESW). The cation/anion combination utilized significantly influences their physical and electrochemical properties, therefore a thorough discussion of different combinations is outlined. Compatibility with a wide array of cathode and anode materials such as LFP, V2O5, Ge and Sn is exhibited, whereby thin-films and nanostructured materials are investigated for micro energy applications. Polymer gel electrolytes suitable for layer-by-layer fabrication are discussed for the various pyrrolidinium cations, and their compatibility with electrode materials assessed. Recent advancements regarding the modification of typical cations such a 1-butyl-1-methylpyrrolidinium, to produce ether-functionalized or symmetrical cations is discussed.


Asunto(s)
Suministros de Energía Eléctrica , Líquidos Iónicos/química , Litio/química , Pirrolidinas/química , Electrólitos
11.
J Xray Sci Technol ; 28(4): 641-658, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390644

RESUMEN

OBJECTIVE: Several physical factors such as dose rate and photon energy may change response and sensitivity of polymer gel dosimeters. This study aims to evaluate the R2-dose response and sensitivity dependence of PASSAG-U gel dosimeters with 3% and 5% urea on dose rate and photon energy. MATERIALS AND METHODS: The PASSAG-U gel dosimeters were prepared under normal atmospheric conditions. The obtained gel dosimeters were irradiated to different dose rates (100, 200, and 300 cGy/min) and photon energies (6 and 15 MV). Finally, responses (R2) of the PASSAG-U gel dosimeters with 3% and 5% urea were analyzed by MRI technique at 1, 10, 14 days after the irradiation process. RESULTS: The findings showed that the R2-dose responses of PASSAG-U gel dosimeters with 3% and 5% urea do not vary under the differently evaluated dose rates and photon energies. The R2-dose sensitivity of PASSAG-U polymer gel dosimeter with 3% urea does not change under the differently evaluated dose rates and photon energies, but it changes for PASSAG-U polymer gel dosimeter with 5% urea. The dose resolution values ranged from 0.20 to 0.86 Gy and from 0.27 to 2.20 Gy for the PASSAG-U gel dosimeter with 3% and 5% urea for the different dose rates and photon energies, respectively. Furthermore, it was revealed that the R2-dose response and sensitivity dependence of PASSAG-U gel dosimeters with 3% and 5% urea on dose rate and photon energy can vary over post irradiation time. CONCLUSIONS: The study results demonstrated that dosimetric characteristics (dependence of dose rate and photon energy, and dose resolution) of PASSAG-U gel dosimeter with 3% were better than those of PASSAG-U gel dosimeter with 5% urea.


Asunto(s)
Dosímetros de Radiación , Relación Dosis-Respuesta en la Radiación , Geles , Imagen por Resonancia Magnética , Fotones , Polímeros , Dosis de Radiación , Radiometría , Sensibilidad y Especificidad , Urea/análisis
12.
Rep Pract Oncol Radiother ; 25(1): 100-103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31908601

RESUMEN

BACKGROUND: Three dimensional (3D) dosimetry methods are useful for advanced radiotherapy techniques such as stereotactic radiosurgery (SRS) and high dose rate (HDR) brachytherapy. Polymer gel is one of the more reliable 3D dosimetry techniques. More studies are needed to improve the efficiency of polymer gels for their application in dosimetry. AIM: In the current study, the best protocol for reading of N-isopropyl acrylamide (NIPAM) polymer gel by X-ray computed tomography (CT) was implemented for application in radiotherapy. MATERIAL AND METHODS: The NIPAM gel was made and irradiated by 6 MV. Its reading was done by the X-ray CT after 24 h and the information examined by using the MATLAB software. In the present work, the different effects of slice thicknesses and voltages were investigated for its lower toxicity of NIPAM polymer gel. The results of a recipe of different filtering on the response curve of polymer gel was investigated. RESULTS: The measured dose sensitivity was Δ N C T H  = 0.29 ± 0.01 H G y - 1 for the NIPAM dosimeter. The best sensitivity was achieved for 120 kVp and the slice thickness of 10 mm. The greater slice thickness gained more desirable sensitivity. This process was repeated by using different filtering with different thicknesses to obtain the best sensitivity. CONCLUSIONS: The sensitivity of X-ray CT reading technique of NIPAM Polymer gel depended on the slice thickness and kVp. The wiener2 filtering was useful to improving sensitivity.

13.
Chemistry ; 25(54): 12497-12501, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31343787

RESUMEN

N-Substituted naphthalimides (NNIs) have been shown to exhibit highly efficient and persistent room-temperature phosphorescence from an NNI-localized triplet excited state, when the N-substitution is a sufficiently strong donor and mediates an intramolecular charge-transfer (ICT) state upon photo-excitation. This work shows that, when the electron-donating ability of the N-substitution is further increased in the presence of a carbanion or phenoxide, spontaneous electron transfer (ET) occurs and results in radical anions, verified with electron-paramagnetic resonance (EPR) spectroscopy. However, the EPR-active anion is surprisingly persistent and impervious to nucleophilic and radical reactions under anionic conditions. The stability is thought to originate from an intramolecular spin pairing between the N-donor and the NI acceptor post ET, which is demonstrated in supramolecular chemistry.

14.
Sci Technol Adv Mater ; 20(1): 608-621, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231450

RESUMEN

For the application of polymer gels, it is necessary to control independently and precisely their various physical properties. However, the heterogeneity of polymer gels hinders the precise control over the structure, as well as the verification of theories. To understand the structure-property relationship of polymer gels, many researchers have tried to develop a homogeneous model network. Most of the model networks were made from polymer melts that did not have a solvent and had many entanglements in the structure. Because the contribution of entanglements is much larger than that of chemical crosslinking, it was difficult to focus on the crosslinking structure, which is the structure considered in conventional theories. To overcome such a situation, we have developed a new model network system that contains much solvent. Specifically, we fabricated the polymer gel (Tetra-PEG gel) by mixing two types of solutions of tetra-armed poly(ethylene glycol) (Tetra-PEG) with mutually reactive end groups (amine (-PA) and activated ester (-HS)). Because the existence of a solvent strongly reduces the effect of entanglements, the effect of the crosslinking structure on the physical properties can be extracted. In this review, we present the structure-property relationship of Tetra-PEG gel. First, we show the structural homogeneity of Tetra-PEG gels. Then, we explain gelation reaction, elastic modulus, fracture energy and kinetics of swelling and shrinking of Tetra-PEG gels by comparing the theories and experimental results.

15.
Sensors (Basel) ; 19(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717510

RESUMEN

The aim of this study was to investigate the use of inexpensive and easy-to-use hydrogel "marble" electrodes for the recording of electrical potentials of the human visual cortex using visual evoked potentials (VEPs) as example. Top hat-shaped holders for the marble electrodes were developed with an electrode cap to acquire the signals. In 12 healthy volunteers, we compared the VEPs obtained with conventional gold-cup electrodes to those obtained with marble electrodes. Checkerboards of two check sizes-0.8° and 0.25°-were presented. Despite the higher impedance of the marble electrodes, the line noise could be completely removed by averaging 64 single traces, and VEPs could be recorded. Linear mixed-effect models using electrode type, stimulus, and recording duration revealed a statistically significant effect of the electrode type on only VEP N75 peak latency (mean ± SEM: 1.0 ± 1.2 ms) and amplitude (mean ± SEM: 0.8 ± 0.9 µV) The mean amplitudes of the delta, theta, alpha, beta, and gamma frequency bands of marble electrodes were statistically significantly different and, on average, 25% higher than those of gold-cup electrodes. However, the mean amplitudes showed a statistically significant strong correlation (Pearson's r = 0.8). We therefore demonstrate the potential of the inexpensive and efficient hydrogel electrode to replace conventional gold-cup electrodes for the recording of VEPs and possibly other recordings from the human cortex.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Polímeros/química , Electrodos Implantados , Electrofisiología , Humanos , Corteza Visual/fisiología
16.
Small ; 14(36): e1800842, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30091844

RESUMEN

Quasi-solid-state dye-sensitized solar cells (DSSCs) fabricated with lightweight flexible substrates have a great potential in wearable electronic devices for in situ powering. However, the poor lifespan of these DSSCs limits their practical application. Strong mechanical stresses involved in practical applications cause breakage of the electrode/electrolyte interface in the DSSCs greatly affecting their performance and lifetime. Here, a mechanically robust, low-cost, long-lasting, and environment-friendly quasi-solid-state DSSC using a smart thermoreversible water-based polymer gel electrolyte with self-healing characteristics at a low temperature (below 0 °C) is demonstrated. When the performance of the flexible DSSC is hindered by strong mechanical stresses (i.e., from multiple bending/twisting/shrinking actions), a simple cooling treatment can regenerate the electrode/electrolyte interface and recover the performance close to the initial level. A performance recovery as high as 94% is proven possible even after 300 cycles of 90° bending. To the best of our knowledge, this is the first aqueous DSSC device with self-healing behavior, using a smart thermoreversible polymer gel electrolyte, which provides a new perspective in flexible wearable solid-state photovoltaic devices.

17.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28795447

RESUMEN

A new strategy is introduced to prepare an adaptive polymer gel that has a unique adaptability in response to environmental stimuli. This gel is prepared by the thiol-ene "click" reaction between a bisvinyl [2]catenane and a poly(ethylene glycol) derivative containing multiple thiol groups. The catenane crosslinker is responsive to external stimuli due to the existence of intercomponent hydrogen bonding (IHB). The strong IHB restricts the rotation and movement of the crosslinker, giving it a rigid feature; however, the crosslinker becomes flexible when the IHB is destroyed. In consequence, the resulting gel can be reversibly switched between tough and soft states under stimulations.


Asunto(s)
Antracenos/química , Reactivos de Enlaces Cruzados/química , Polietilenglicoles/química , Geles/química , Enlace de Hidrógeno , Estructura Molecular , Compuestos de Sulfhidrilo/química
18.
Angew Chem Int Ed Engl ; 53(17): 4418-22, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24644126

RESUMEN

Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.

19.
Gels ; 10(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38247770

RESUMEN

Research into functional gels and chemicals and their applications represents a cutting-edge international field of study. For example, investigating how they can be applied in oil and gas drilling (and extraction engineering) and developing novel functional chemical materials for the oil field could provide innovative solutions and technological methods for oil and gas drilling and extraction operations. Through a literature analysis, this paper presents a review of the current research status and application scenarios of different types of functional gels and chemicals, both domestically and internationally. The classification and preparation principles of various functional materials are systematically outlined and the current applications of functional gels and chemicals in oil and gas drilling and extraction engineering are introduced. These applications include drilling and plugging, enhanced oil recovery, water plugging, and profile control. The formation mechanisms and application scenarios of different types of gels and chemicals are also analyzed and summarized, with a discussion of their prospects in oil and gas drilling and extraction engineering. We broaden the scope of functional gels and chemicals by exploring new application fields and promoting the development of different types of gels and chemicals in a more intelligent direction.

20.
Gels ; 10(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38247795

RESUMEN

With the gradual deepening of the exploration and development of deep and ultra-deep oil and gas resources, the problem of lost circulation in drilling operations is becoming more and more complex. From field experience, conventional plugging materials cannot fully meet the technical requirements of plugging operations in drilling engineering. In this study, a high-temperature- and salt-resistant polymer HDZ-A was synthesized. A high-temperature and delayed crosslinking polymer gel plugging agent can be prepared by adding a certain concentration of a crosslinking agent and a retarder. In this paper, the optimum synthesis conditions of the HDZ-A were determined with orthogonal experiments using viscoelasticity and viscosity as evaluation criteria for newly developed polymers. The molecular structure, temperature resistance, and relative molecular mass of HDZ-A were determined using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and gel permeation chromatography. In addition, the optimal formula of the gel plugging agent was determined using gel strength as the evaluation standard. The results show that the newly developed gel plugging agent has stable performance after high-temperature crosslinking, and can resist high temperatures of 160 °C during formation. Under conditions of 160 °C, the gelation time can reach 4.5 h, and the plugging efficiency can reach more than 97%. Finally, the field test of the newly developed high-temperature-resistant delayed crosslinking polymer gel plugging agent was carried out in the direct exploration well KT-14X in the Ordos Basin. The field test showed that the plugging effect of the HDZ-A gel plugging agent was remarkable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA