Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.249
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(11): 2313-2328.e15, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37146612

RESUMEN

Hybrid potato breeding will transform the crop from a clonally propagated tetraploid to a seed-reproducing diploid. Historical accumulation of deleterious mutations in potato genomes has hindered the development of elite inbred lines and hybrids. Utilizing a whole-genome phylogeny of 92 Solanaceae and its sister clade species, we employ an evolutionary strategy to identify deleterious mutations. The deep phylogeny reveals the genome-wide landscape of highly constrained sites, comprising ∼2.4% of the genome. Based on a diploid potato diversity panel, we infer 367,499 deleterious variants, of which 50% occur at non-coding and 15% at synonymous sites. Counterintuitively, diploid lines with relatively high homozygous deleterious burden can be better starting material for inbred-line development, despite showing less vigorous growth. Inclusion of inferred deleterious mutations increases genomic-prediction accuracy for yield by 24.7%. Our study generates insights into the genome-wide incidence and properties of deleterious mutations and their far-reaching consequences for breeding.


Asunto(s)
Fitomejoramiento , Solanum tuberosum , Diploidia , Mutación , Filogenia , Solanum tuberosum/genética
2.
Cell ; 184(15): 3873-3883.e12, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171306

RESUMEN

Reinventing potato from a clonally propagated tetraploid into a seed-propagated diploid, hybrid potato, is an important innovation in agriculture. Due to deleterious mutations, it has remained a challenge to develop highly homozygous inbred lines, a prerequisite to breed hybrid potato. Here, we employed genome design to develop a generation of pure and fertile potato lines and thereby the uniform, vigorous F1s. The metrics we applied in genome design included the percentage of genome homozygosity and the number of deleterious mutations in the starting material, the number of segregation distortions in the S1 population, the haplotype information to infer the break of tight linkage between beneficial and deleterious alleles, and the genome complementarity of the parental lines. This study transforms potato breeding from a slow, non-accumulative mode into a fast-iterative one, thereby potentiating a broad spectrum of benefits to farmers and consumers.


Asunto(s)
Genoma de Planta , Hibridación Genética , Solanum tuberosum/genética , Cruzamientos Genéticos , Diploidia , Fertilidad/genética , Genes de Plantas , Variación Genética , Genética de Población , Heterocigoto , Homocigoto , Vigor Híbrido/genética , Mutación/genética , Linaje , Fitomejoramiento , Análisis de Componente Principal , Selección Genética
3.
Plant Cell ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819320

RESUMEN

The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.

4.
Plant Cell ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941447

RESUMEN

Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in two transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.

5.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990942

RESUMEN

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Asunto(s)
Escarabajos , Lipogénesis , Estaciones del Año , Animales , Lipogénesis/fisiología , Escarabajos/metabolismo , Escarabajos/genética , Escarabajos/fisiología , Triglicéridos/metabolismo , Metabolismo de los Lípidos , Diapausa de Insecto , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
6.
Proc Natl Acad Sci U S A ; 121(26): e2322927121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885386

RESUMEN

RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.


Asunto(s)
Escarabajos , Citosol , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , ARN Bicatenario , Proteínas de Unión al ARN , Animales , Retículo Endoplásmico/metabolismo , ARN Bicatenario/metabolismo , Citosol/metabolismo , Escarabajos/metabolismo , Escarabajos/genética , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Interferencia de ARN , Transporte Biológico
7.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549549

RESUMEN

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Proteínas de Plantas , Raíces de Plantas , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Ácidos Indolacéticos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
8.
Plant J ; 117(6): 1702-1715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38334712

RESUMEN

Potatoes (Solanum tuberosum L.) are a fundamental staple for millions of people worldwide. They provide essential amino acids, vitamins, and starch - a vital component of the human diet, providing energy and serving as a source of fiber. Unfortunately, global warming is posing a severe threat to this crop, leading to significant yield losses, and thereby endangering global food security. Industrial agriculture traditionally relies on excessive nitrogen (N) fertilization to boost yields. However, it remains uncertain whether this is effective in combating heat-related yield losses of potato. Therefore, our study aimed to investigate the combinatory effects of heat stress and N fertilization on potato tuber formation. We demonstrate that N levels and heat significantly impact tuber development. The combination of high N and heat delays tuberization, while N deficiency initiates early tuberization, likely through starvation-induced signals, independent of SELF-PRUNING 6A (SP6A), a critical regulator of tuberization. We also found that high N levels in combination with heat reduce tuber yield rather than improve it. However, our study revealed that SP6A overexpression can promote tuberization under these inhibiting conditions. By utilizing the excess of N for accumulating tuber biomass, SP6A overexpressing plants exhibit a shift in biomass distribution towards the tubers. This results in an increased yield compared to wild-type plants. Our results highlight the role of SP6A overexpression as a viable strategy for ensuring stable potato yields in the face of global warming. As such, our findings provide insights into the complex factors impacting potato crop productivity.


Asunto(s)
Solanum tuberosum , Humanos , Temperatura , Nitrógeno/metabolismo , Fertilización , Tubérculos de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant J ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776519

RESUMEN

The essence of wound healing is the accumulation of suberin at wounds, which is formed by suberin polyphenolic (SPP) and suberin polyaliphatic (SPA). The biosynthesis of SPP and SPA monomers is catalyzed by several enzyme classes related to phenylpropanoid metabolism and fatty acid metabolism, respectively. However, how suberin biosynthesis is regulated at the transcriptional level during potato (Solanum tuberosum) tuber wound healing remains largely unknown. Here, 6 target genes and 15 transcription factors related to suberin biosynthesis in tuber wound healing were identified by RNA-seq technology and qRT-PCR. Dual luciferase and yeast one-hybrid assays showed that StMYB168 activated the target genes StPAL, StOMT, and St4CL in phenylpropanoid metabolism. Meanwhile, StMYB24 and StMYB144 activated the target genes StLTP, StLACS, and StCYP in fatty acid metabolism, and StFHT involved in the assembly of SPP and SPA domains in both native and wound periderms. More importantly, virus-induced gene silencing in S. tuberosum and transient overexpression in Nicotiana benthamiana assays confirmed that StMYB168 regulates the biosynthesis of free phenolic acids, such as ferulic acid. Furthermore, StMYB24/144 regulated the accumulation of suberin monomers, such as ferulates, α, ω-diacids, and ω-hydroxy acids. In conclusion, StMYB24, StMYB144, and StMYB168 have an elaborate division of labor in regulating the synthesis of suberin during tuber wound healing.

10.
Genomics ; 116(5): 110883, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857813

RESUMEN

Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.

11.
Plant J ; 116(5): 1342-1354, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37614094

RESUMEN

Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.


Asunto(s)
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/genética , Ralstonia solanacearum/fisiología , Inhibidores de Tripsina/metabolismo , Haz Vascular de Plantas , Plantas , Enfermedades de las Plantas
12.
Plant J ; 113(4): 649-664, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534114

RESUMEN

Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Enfermedades de las Plantas
13.
Plant J ; 113(2): 327-341, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448213

RESUMEN

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.


Asunto(s)
Frío , Solanum tuberosum , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Metabolismo de los Hidratos de Carbono , Hexosas/metabolismo , Sacarosa/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Plant J ; 113(2): 402-415, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562774

RESUMEN

Photoperiod plays a critical role in controlling the formation of sexual or vegetative reproductive organs in potato. Although StPHYF-silenced plants overcome day-length limitations to tuberize through a systemic effect on tuberigen StSP6A expression in the stolon, the comprehensive regulatory network of StPHYF remains obscure. Therefore, the present study investigated the transcriptomes of StPHYF-silenced plants and observed that, in addition to known components of the photoperiodic tuberization pathway, florigen StSP3D and other flowering-related genes were activated in StPHYF-silenced plants, exhibiting an early flowering response. Additionally, grafting experiments uncovered the long-distance effect of StPHYF silencing on gene expression in the stolon, including the circadian clock components, flowering-associated MADSs, and tuberization-related regulatory genes. Similar to the AtFT-AtAP1 regulatory module in Arabidopsis, the present study established that the AP1-like StMADS1 functions downstream of the tuberigen activation complex (TAC) and that suppressing StMADS1 inhibits tuberization in vitro and delays tuberization in vivo. Moreover, the expression of StSP6A was downregulated in StMADS1-silenced plants, implying the expression of StSP6A may be feedback-regulated by StMADS1. Overall, these results reveal that the regulatory network of StPHYF controls flowering and tuberization and targets the crucial tuberization factor StMADS1 through TAC, thereby providing a better understanding of StPHYF-mediated day-length perception during potato reproduction.


Asunto(s)
Arabidopsis , Fitocromo , Solanum tuberosum , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Tubérculos de la Planta/metabolismo , Hojas de la Planta/metabolismo , Fotoperiodo , Arabidopsis/genética , Reproducción , Regulación de la Expresión Génica de las Plantas/genética
15.
Plant J ; 115(2): 398-413, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021636

RESUMEN

The potato's most devastating disease is late blight, which is caused by Phytophthora infestans. Whereas various resistance (R) genes are known, most are typically defeated by this fast-evolving oomycete pathogen. However, the broad-spectrum and durable R8 is a vital gene resource for potato resistance breeding. To support an educated deployment of R8, we embarked on a study on the corresponding avirulence gene Avr8. We overexpressed Avr8 by transient and stable transformation, and found that Avr8 promotes colonization of P. infestans in Nicotiana benthamiana and potato, respectively. A yeast-two-hybrid (Y2H) screen showed that AVR8 interacts with a desumoylating isopeptidase (StDeSI2) of potato. We overexpressed DeSI2 and found that DeSI2 positively regulates resistance to P. infestans, while silencing StDeSI2 downregulated the expression of a set of defense-related genes. By using a specific proteasome inhibitor, we found that AVR8 destabilized StDeSI2 through the 26S proteasome and attenuated early PTI responses. Altogether, these results indicate that AVR8 manipulates desumoylation, which is a new strategy that adds to the plethora of mechanisms that Phytophthora exploits to modulate host immunity, and StDeSI2 provides a new target for durable resistance breeding against P. infestans in potato.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Fitomejoramiento , Inmunidad de la Planta , Solanum tuberosum/genética , Enfermedades de las Plantas
16.
Plant J ; 113(2): 342-356, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36444716

RESUMEN

Transitory starch and vacuolar sugars function as highly dynamic pools of instantly accessible metabolites in plant leaf cells. Their metabolic regulation is critical for plant survival. The tonoplast sugar transporters (TSTs), responsible for sugar uptake into vacuoles, regulate cellular sugar partitioning and vacuolar sugar accumulation. However, whether TSTs are involved in leaf transient starch turnover and plant growth is unclear. Here, we found that suppressing StTST3.1 resulted in growth retardation and pale green leaves in potato plants. StTST3.1-silenced plants displayed abnormal chloroplasts and impaired photosynthetic performance. The subcellular localization assay and the oscillation expression patterns revealed that StTST3.1 encoded a tonoplast-localized protein and responded to photoperiod. Moreover, RNA-seq analyses identified that starch synthase (SS2 and SS6) and glucan water, dikinase (GWD), were downregulated in StTST3.1-silenced lines. Correspondingly, the capacity for starch synthesis and degradation was decreased in StTST3.1-silenced lines. Surprisingly, StTST3.1-silenced leaves accumulated exceptionally high levels of maltose but low levels of sucrose and hexose. Additionally, chlorophyll content was reduced in StTST3.1-silenced leaves. Analysis of chlorophyll metabolic pathways found that Non-Yellow Coloring 1 (NYC1)-like (NOL), encoding a chloroplast-localized key enzyme that catalyzes the initial step of chlorophyll b degradation, was upregulated in StTST3.1-silenced leaves. Transient overexpression of StNOL accelerated chlorophyll b degradation in tobacco leaves. Our results indicated that StTST3.1 is involved in transitory starch turnover and chlorophyll metabolism, thereby playing a critical role in normal potato plant growth.


Asunto(s)
Solanum tuberosum , Almidón , Almidón/metabolismo , Vacuolas/metabolismo , Plantas/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Maltosa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Mol Plant Microbe Interact ; 37(1): 25-35, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37717227

RESUMEN

The potato cyst nematode (Globodera rostochiensis) is an obligate root pathogen of potatoes. G. rostochiensis encodes several highly expanded effector gene families, including the Gr4D06 family; however, little is known about the function of this effector family. We cloned four 29D09 genes from G. rostochiensis (named Gr29D09v1/v2/v3/v4) that share high sequence similarity and are homologous to the Hg29D09 and Hg4D06 effector genes from the soybean cyst nematode (Heterodera glycines). Phylogenetic analysis revealed that Gr29D09 genes belong to a subgroup of the Gr4D06 family. We showed that Gr29D09 genes are expressed exclusively within the nematode's dorsal gland cell and are dramatically upregulated in parasitic stages, indicating involvement of Gr29D09 effectors in nematode parasitism. Transgenic potato lines overexpressing Gr29D09 variants showed increased susceptibility to G. rostochiensis. Transient expression assays in Nicotiana benthamiana demonstrated that Gr29D09v3 could suppress reactive oxygen species (ROS) production and defense gene expression induced by flg22 and cell death mediated by immune receptors. These results suggest a critical role of Gr29D09 effectors in defense suppression. The use of affinity purification coupled with nanoliquid chromatography-tandem mass spectrometry identified potato hexokinase 1 (StHXK1) as a candidate target of Gr29D09. The Gr29D09-StHXK1 interaction was further confirmed using in planta protein-protein interaction assays. Plant HXKs have been implicated in defense regulation against pathogen infection. Interestingly, we found that StHXK1 could enhance flg22-induced ROS production, consistent with a positive role of plant HXKs in defense. Altogether, our results suggest that targeting StHXK1 by Gr29D09 effectors may impair the positive function of StHXK1 in plant immunity, thereby aiding nematode parasitism. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Nematodos , Solanum tuberosum , Tylenchoidea , Animales , Hexoquinasa/genética , Especies Reactivas de Oxígeno , Filogenia , Proteínas/genética , Tylenchoidea/fisiología
18.
Mol Plant Microbe Interact ; 37(3): 239-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921637

RESUMEN

Plant pathogens manipulate the cellular environment of the host to facilitate infection and colonization that often lead to plant diseases. To accomplish this, many specialized pathogens secrete virulence proteins called effectors into the host cell, which subvert processes such as immune signaling, gene transcription, and host metabolism. Phytophthora infestans, the causative agent of potato late blight, employs an expanded repertoire of RxLR effectors with WY domains to manipulate the host through direct interaction with protein targets. However, our understanding of the molecular mechanisms underlying the interactions between WY effectors and their host targets remains limited. In this study, we performed a structural and biophysical characterization of the P. infestans WY effector Pi04314 in complex with the potato Protein Phosphatase 1-c (PP1c). We elucidate how Pi04314 uses a WY domain and a specialized C-terminal loop carrying a KVxF motif that interact with conserved surfaces on PP1c, known to be used by host regulatory proteins for guiding function. Through biophysical and in planta analyses, we demonstrate that Pi04314 WY or KVxF mutants lose their ability to bind PP1c. The loss of PP1c binding correlates with changes in PP1c nucleolar localization and a decrease in lesion size in plant infection assays. This study provides insights into the manipulation of plant hosts by pathogens, revealing how effectors exploit key regulatory interfaces in host proteins to modify their function and facilitate disease. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Phytophthora infestans , Phytophthora infestans/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas/metabolismo , Factores de Transcripción/metabolismo , Unión Proteica , Enfermedades de las Plantas
19.
BMC Genomics ; 25(1): 274, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475714

RESUMEN

BACKGROUND: Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS: Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS: These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Almidón/metabolismo , Fitomejoramiento , Alelos , Fenotipo , Esteroides
20.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317113

RESUMEN

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Protones , Cloruro de Sodio/farmacología , Antiportadores/genética , Antiportadores/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas , Cationes/metabolismo , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA