Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 551-584, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941604

RESUMEN

Poxviruses have evolved a wide array of mechanisms to evade the immune response, and we provide an overview of the different immunomodulatory strategies. Poxviruses prevent the recognition of viral DNA that triggers the immune responses and inhibit signaling pathways within the infected cell. A unique feature of poxviruses is the production of secreted proteins that mimic cytokines and cytokine receptors, acting as decoy receptors to neutralize the activity of cytokines and chemokines. The capacity of these proteins to evade cellular immune responses by inhibiting cytokine activation is complemented by poxviruses' strategies to block natural killer cells and cytotoxic T cells, often through interfering with antigen presentation pathways. Mechanisms that target complement activation are also encoded by poxviruses. Virus-encoded proteins that target immune molecules and pathways play a major role in immune modulation, and their contribution to viral pathogenesis, facilitating virus replication or preventing immunopathology, is discussed.


Asunto(s)
Evasión Inmune , Infecciones por Poxviridae , Poxviridae , Humanos , Poxviridae/inmunología , Poxviridae/fisiología , Animales , Infecciones por Poxviridae/inmunología , Citocinas/metabolismo , Transducción de Señal , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Presentación de Antígeno/inmunología , Interacciones Huésped-Patógeno/inmunología
2.
Cell ; 174(5): 1143-1157.e17, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078703

RESUMEN

Viruses employ elaborate strategies to coopt the cellular processes they require to replicate while simultaneously thwarting host antiviral responses. In many instances, how this is accomplished remains poorly understood. Here, we identify a protein, F17 encoded by cytoplasmically replicating poxviruses, that binds and sequesters Raptor and Rictor, regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2, respectively. This disrupts mTORC1-mTORC2 crosstalk that coordinates host responses to poxvirus infection. During infection with poxvirus lacking F17, cGAS accumulates together with endoplasmic reticulum vesicles around the Golgi, where activated STING puncta form, leading to interferon-stimulated gene expression. By contrast, poxvirus expressing F17 dysregulates mTOR, which localizes to the Golgi and blocks these antiviral responses in part through mTOR-dependent cGAS degradation. Ancestral conservation of Raptor/Rictor across eukaryotes, along with expression of F17 across poxviruses, suggests that mTOR dysregulation forms a conserved poxvirus strategy to counter cytosolic sensing while maintaining the metabolic benefits of mTOR activity.


Asunto(s)
Citosol/química , Poxviridae/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Homeostasis , Humanos , Inmunidad Innata , Interferones/metabolismo , Cinética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
3.
Cell ; 167(3): 684-694.e9, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768891

RESUMEN

Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe orthopoxvirus infections but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal antibodies (Abs) from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV, and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Infecciones por Poxviridae/inmunología , Viruela Vacuna/inmunología , Virus de la Viruela Vacuna/inmunología , Reacciones Cruzadas , Humanos , Leucocitos Mononucleares/inmunología , Mpox/inmunología , Monkeypox virus/inmunología , Viruela/inmunología , Vaccinia/inmunología , Virus Vaccinia/inmunología , Virus de la Viruela/inmunología
4.
Immunity ; 54(2): 247-258.e7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33444549

RESUMEN

The vaccine strain against smallpox, vaccinia virus (VACV), is highly immunogenic yet causes relatively benign disease. These attributes are believed to be caused by gene loss in VACV. Using a targeted small interfering RNA (siRNA) screen, we identified a viral inhibitor found in cowpox virus (CPXV) and other orthopoxviruses that bound to the host SKP1-Cullin1-F-box (SCF) machinery and the essential necroptosis kinase receptor interacting protein kinase 3 (RIPK3). This "viral inducer of RIPK3 degradation" (vIRD) triggered ubiquitination and proteasome-mediated degradation of RIPK3 and inhibited necroptosis. In contrast to orthopoxviruses, the distantly related leporipoxvirus myxoma virus (MYXV), which infects RIPK3-deficient hosts, lacks a functional vIRD. Introduction of vIRD into VACV, which encodes a truncated and defective vIRD, enhanced viral replication in mice. Deletion of vIRD reduced CPXV-induced inflammation, viral replication, and mortality, which were reversed in RIPK3- and MLKL-deficient mice. Hence, vIRD-RIPK3 drives pathogen-host evolution and regulates virus-induced inflammation and pathogenesis.


Asunto(s)
Virus de la Viruela Vacuna/fisiología , Viruela Vacuna/inmunología , ARN Interferente Pequeño/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo , Animales , Evolución Molecular , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inflamación , Ratones , Ratones Noqueados , Necroptosis/genética , Orthopoxvirus , Filogenia , Proteínas Quinasas/genética , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Análisis de Secuencia de ARN , Proteínas Virales/genética , Replicación Viral
5.
Immunity ; 54(2): 276-290.e5, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33434494

RESUMEN

The oropharyngeal mucosa serves as a perpetual pathogen entry point and a critical site for viral replication and spread. Here, we demonstrate that type 1 innate lymphoid cells (ILC1s) were the major immune force providing early protection during acute oral mucosal viral infection. Using intravital microscopy, we show that ILC1s populated and patrolled the uninfected labial mucosa. ILC1s produced interferon-γ (IFN-γ) in the absence of infection, leading to the upregulation of key antiviral genes, which were downregulated in uninfected animals upon genetic ablation of ILC1s or antibody-based neutralization of IFN-γ. Thus, tonic IFN-γ production generates increased oral mucosal viral resistance even before infection. Our results demonstrate barrier-tissue protection through tissue surveillance in the absence of rearranged-antigen receptors and the induction of an antiviral state during homeostasis. This aspect of ILC1 biology raises the possibility that these cells do not share true functional redundancy with other tissue-resident lymphocytes.


Asunto(s)
Interferón gamma/metabolismo , Linfocitos/inmunología , Orofaringe/inmunología , Mucosa Respiratoria/inmunología , Virus Vaccinia/fisiología , Vaccinia/inmunología , Animales , Células Cultivadas , Resistencia a la Enfermedad , Humanos , Inmunidad Innata , Interferón gamma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Dominio T Box/genética , Células TH1/inmunología
6.
EMBO Rep ; 25(3): 1310-1325, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321165

RESUMEN

Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.


Asunto(s)
Poxviridae , Vaccinia , Humanos , Sulfatos de Condroitina , Virus Vaccinia/metabolismo , Poxviridae/metabolismo , Proteínas Virales/metabolismo , Fusión de Membrana , Proteínas Portadoras
7.
Proc Natl Acad Sci U S A ; 120(35): e2304242120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607234

RESUMEN

Zoonotic poxviruses such as mpox virus (MPXV) continue to threaten public health safety since the eradication of smallpox. Vaccinia virus (VACV), the prototypic poxvirus used as the vaccine strain for smallpox eradication, is the best-characterized member of the poxvirus family. VACV encodes a serine protease inhibitor 1 (SPI-1) conserved in all orthopoxviruses, which has been recognized as a host range factor for modified VACV Ankara (MVA), an approved smallpox vaccine and a promising vaccine vector. FAM111A (family with sequence similarity 111 member A), a nuclear protein that regulates host DNA replication, was shown to restrict the replication of a VACV SPI-1 deletion mutant (VACV-ΔSPI-1) in human cells. Nevertheless, the detailed antiviral mechanisms of FAM111A were unresolved. Here, we show that FAM111A is a potent restriction factor for VACV-ΔSPI-1 and MVA. Deletion of FAM111A rescued the replication of MVA and VACV-ΔSPI-1 and overexpression of FAM111A significantly reduced viral DNA replication and virus titers but did not affect viral early gene expression. The antiviral effect of FAM111A necessitated its trypsin-like protease domain and DNA-binding domain but not the PCNA-interacting motif. We further identified that FAM111A translocated into the cytoplasm upon VACV infection by degrading the nuclear pore complex via its protease activity, interacted with VACV DNA-binding protein I3, and promoted I3 degradation through autophagy. Moreover, SPI-1 from VACV, MPXV, or lumpy skin disease virus was able to antagonize FAM111A by prohibiting its nuclear export. Our findings reveal the detailed mechanism by which FAM111A inhibits VACV and provide explanations for the immune evasive function of VACV SPI-1.


Asunto(s)
Poxviridae , Viruela , Vaccinia , Animales , Bovinos , Humanos , Virus Vaccinia/genética , Inhibidores de Serina Proteinasa , Proteínas Virales/genética , Replicación del ADN , Especificidad del Huésped , ADN Viral , Replicación Viral , Receptores Virales
8.
Proc Natl Acad Sci U S A ; 119(20): e2115354119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549551

RESUMEN

Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB­dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short­half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.


Asunto(s)
Interacciones Huésped-Patógeno , Myxoma virus , Mixomatosis Infecciosa , FN-kappa B , Conejos , eIF-2 Quinasa , Animales , Redes y Vías Metabólicas , Myxoma virus/genética , Myxoma virus/patogenicidad , Mixomatosis Infecciosa/metabolismo , Mixomatosis Infecciosa/virología , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Conejos/virología , eIF-2 Quinasa/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046037

RESUMEN

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Supresoras de Tumor/química , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Unión Proteica , Estrés Fisiológico , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(16): e2120048119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412888

RESUMEN

Heritable symbionts display a wide variety of transmission strategies to travel from one insect generation to the next. Parasitoid wasps, one of the most diverse insect groups, maintain several heritable associations with viruses that are beneficial for wasp survival during their development as parasites of other insects. Most of these beneficial viral entities are strictly transmitted through the wasp germline as endogenous viral elements within wasp genomes. However, a beneficial poxvirus inherited by Diachasmimorpha longicaudata wasps, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), is not integrated into the wasp genome and therefore may employ different tactics to infect future wasp generations. Here, we demonstrated that transmission of DlEPV is primarily dependent on parasitoid wasps, since viral transmission within fruit fly hosts of the wasps was limited to injection of the virus directly into the larval fly body cavity. Additionally, we uncovered a previously undocumented form of posthatch transmission for a mutualistic virus that entails external acquisition and localization of the virus within the adult wasp venom gland. We showed that this route is extremely effective for vertical and horizontal transmission of the virus within D. longicaudata wasps. Furthermore, the beneficial phenotype provided by DlEPV during parasitism was also transmitted with perfect efficiency, indicating an effective mode of symbiont spread to the advantage of infected wasps. These results provide insight into the transmission of beneficial viruses among insects and indicate that viruses can share features with cellular microbes during their evolutionary transitions into symbionts.


Asunto(s)
Entomopoxvirinae , Interacciones Microbiota-Huesped , Simbiosis , Tephritidae , Avispas , Animales , Evolución Biológica , Entomopoxvirinae/fisiología , Tephritidae/virología , Avispas/genética , Avispas/virología
11.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38546099

RESUMEN

Cardiac glycosides (CGs) are natural steroid glycosides, which act as inhibitors of the cellular sodium-potassium ATPase pump. Although traditionally considered toxic to human cells, CGs are widely used as drugs for the treatment of cardiovascular-related medical conditions. More recently, CGs have been explored as potential anti-viral drugs and inhibit replication of a range of RNA and DNA viruses. Previously, a compound screen identified CGs that inhibited vaccinia virus (VACV) infection. However, no further investigation of the inhibitory potential of these compounds was performed, nor was there investigation of the stage(s) of the poxvirus lifecycle they impacted. Here, we investigated the anti-poxvirus activity of a broad panel of CGs. We found that all CGs tested were potent inhibitors of VACV replication. Our virological experiments showed that CGs did not impact virus infectivity, binding, or entry. Rather, experiments using recombinant viruses expressing reporter proteins controlled by VACV promoters and arabinoside release assays demonstrated that CGs inhibited early and late VACV protein expression at different concentrations. Lack of virus assembly in the presence of CGs was confirmed using electron microscopy. Thus, we expand our understanding of compounds with anti-poxvirus activity and highlight a yet unrecognized mechanism by which poxvirus replication can be inhibited.


Asunto(s)
Glicósidos Cardíacos , Poxviridae , Vaccinia , Humanos , Virus Vaccinia/genética , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/metabolismo , Replicación Viral
12.
Biochem Biophys Res Commun ; 712-713: 149933, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640730

RESUMEN

BEND family transcription factors directly interact with DNA through BEN domains and have been found across metazoan species. Interestingly, certain insect and mammalian viruses have also hijacked Bend genes into their genome. However, the phylogenetic classification and evolution of these viral BEN domains remain unclear. Building on our previous finding that in silico method accurately determine the 3D model of BEN domains, we used AlphaFold2 to predict the tertiary structures of poxviral BEN domains for comprehensive homologous comparison. We revealed that the majority of poxviral BEN modules exhibit characteristics of type II BEN. Additionally, electrostatic surface potential analysis found various poxviral BEN domains, including the first BEN of OPG067 in Orthopoxvirus, the third BEN of OPG067 in Yatapoxvirus and the third BEN of MC036R in MCV, have positively charged protein surfaces, indicating a structural basis for DNA loading. Notably, MC036R shares structural resemblance with human BEND3, as they both contain four BEN domains and an intrinsically disordered region. In summary, our discoveries provide deeper insights into the functional roles of BEN proteins within poxviruses.


Asunto(s)
Poxviridae , Dominios Proteicos , Proteínas Virales , Poxviridae/genética , Poxviridae/química , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Humanos , Homología Estructural de Proteína , Filogenia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Virol ; 97(12): e0127223, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38009914

RESUMEN

IMPORTANCE: Human poxvirus infections have caused significant public health burdens both historically and recently during the unprecedented global Mpox virus outbreak. Although vaccinia virus (VACV) infection of mice is a commonly used model to explore the anti-poxvirus immune response, little is known about the metabolic changes that occur in vivo during infection. We hypothesized that the metabolome of VACV-infected skin would reflect the increased energetic requirements of both virus-infected cells and immune cells recruited to sites of infection. Therefore, we profiled whole VACV-infected skin using untargeted mass spectrometry to define the metabolome during infection, complementing these experiments with flow cytometry and transcriptomics. We identified specific metabolites, including nucleotides, itaconic acid, and glutamine, that were differentially expressed during VACV infection. Together, this study offers insight into both virus-specific and immune-mediated metabolic pathways that could contribute to the clearance of cutaneous poxvirus infection.


Asunto(s)
Reprogramación Metabólica , Metaboloma , Piel , Virus Vaccinia , Vaccinia , Animales , Ratones , Citometría de Flujo , Perfilación de la Expresión Génica , Glutamina/metabolismo , Espectrometría de Masas , Nucleótidos/metabolismo , Piel/inmunología , Piel/metabolismo , Piel/virología , Vaccinia/inmunología , Vaccinia/metabolismo , Vaccinia/virología , Virus Vaccinia/metabolismo , Carga Viral
14.
J Virol ; 97(2): e0194522, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36651749

RESUMEN

Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.


Asunto(s)
Ectromelia Infecciosa , Animales , Ratones , Virus de la Ectromelia , Ectromelia Infecciosa/inmunología , Interferones/metabolismo , Ratones Endogámicos C57BL , Necroptosis/inmunología , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología
15.
J Med Virol ; 96(4): e29620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647027

RESUMEN

Vertical transmission has been described following monkeypox virus (MPXV) infection in pregnant women. The presence of MPXV has been reported in the placenta from infected women, but whether pathogens colonize placenta remains unexplored. We identify trophoblasts as a target cell for MPXV replication. In a pan-microscopy approach, we decipher the specific infectious cycle of MPXV and inner cellular structures in trophoblasts. We identified the formation of a specialized region for viral morphogenesis and replication in placental cells. We also reported infection-induced cellular remodeling. We found that MPXV stimulates cytoskeleton reorganization with intercellular extensions for MPXV cell spreading specifically to trophoblastic cells. Altogether, the specific infectious cycle of MPXV in trophoblast cells and these protrusions that were structurally and morphologically similar to filopodia reveal new insights into the infection of MPXV.


Asunto(s)
Monkeypox virus , Seudópodos , Trofoblastos , Trofoblastos/virología , Humanos , Seudópodos/virología , Femenino , Embarazo , Monkeypox virus/fisiología , Liberación del Virus , Replicación Viral , Citoesqueleto/virología , Placenta/virología , Placenta/citología , Virión/ultraestructura , Microscopía/métodos , Línea Celular
16.
J Med Virol ; 96(4): e29555, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546037

RESUMEN

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Hesperidina , Virus Vaccinia , Animales , Bovinos , Chlorocebus aethiops , Embrión de Pollo , Células Vero , Simulación del Acoplamiento Molecular , Virus Vaccinia/genética , Antivirales/farmacología , ARN Mensajero , Replicación Viral
17.
J Med Virol ; 96(2): e29424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285432

RESUMEN

Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.


Asunto(s)
Infecciones por Virus ADN , Proteínas Quinasas , ARN , Humanos , Inmunidad Innata
18.
J Med Virol ; 96(5): e29610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654702

RESUMEN

In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.


Asunto(s)
Genoma Viral , Metagenómica , Monkeypox virus , Mpox , Secuenciación de Nanoporos , Secuenciación Completa del Genoma , Humanos , Genoma Viral/genética , Metagenómica/métodos , Secuenciación de Nanoporos/métodos , Mpox/epidemiología , Mpox/virología , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Secuenciación Completa del Genoma/métodos , Nanoporos , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
19.
Curr Top Microbiol Immunol ; 442: 1-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37563336

RESUMEN

Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.


Asunto(s)
Herpesviridae , Ácidos Nucleicos , Animales , Humanos , Inmunidad Innata , Linfocitos , Apoptosis/genética , Necrosis/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Mamíferos/metabolismo
20.
FASEB J ; 37(5): e22902, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014316

RESUMEN

The monkeypox epidemic has attracted global attention to poxviruses. The cytoplasmic replication of poxviruses requires extensive protein synthesis, challenging the capacity of the endoplasmic reticulum (ER). However, the role of the ER in the life cycle of poxviruses is unclear. In this study, we demonstrate that infection with the lumpy skin disease virus (LSDV), a member of the poxvirus family, causes ER stress in vivo and in vitro, further facilitating the activation of the unfolded protein response (UPR). Although UPR activation aids in the restoration of the cellular environment, its significance in the LSDV life cycle remains unclear. Furthermore, the significance of ER imbalance for viral replication is also unknown. We show that LSDV replication is hampered by an unbalanced ER environment. In addition, we verify that the LSDV replication depends on the activation of PERK-eIF2α and IRE1-XBP1 signaling cascades rather than ATF6, implying that global translation and reduced XBP1 cleavage are deleterious to LSDV replication. Taken together, these findings indicate that LSDV is involved in the repression of global translational signaling, ER chaperone transcription, and ATF6 cleavage from the Golgi into the nucleus, thereby maintaining cell homeostasis; moreover, PERK and IRE1 activation contribute to LSDV replication. Our findings suggest that targeting UPR elements may be applied in response to infection from LSDV or even other poxviruses, such as monkeypox.


Asunto(s)
Virus de la Dermatosis Nodular Contagiosa , Mpox , Animales , Bovinos , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Virus de la Dermatosis Nodular Contagiosa/metabolismo , Mpox/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Factor de Transcripción Activador 6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA