Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 950
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 47(1): 211-234, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39115926

RESUMEN

The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.


Asunto(s)
Corteza Cerebral , Cognición , Animales , Cognición/fisiología , Corteza Cerebral/fisiología , Humanos , Neuronas/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Red Nerviosa/fisiología , Transducción de Señal/fisiología
2.
Cell ; 169(7): 1291-1302.e14, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28602353

RESUMEN

The emergence of sensory-guided behavior depends on sensorimotor coupling during development. How sensorimotor experience shapes neural processing is unclear. Here, we show that the coupling between motor output and visual feedback is necessary for the functional development of visual processing in layer 2/3 (L2/3) of primary visual cortex (V1) of the mouse. Using a virtual reality system, we reared mice in conditions of normal or random visuomotor coupling. We recorded the activity of identified excitatory and inhibitory L2/3 neurons in response to transient visuomotor mismatches in both groups of mice. Mismatch responses in excitatory neurons were strongly experience dependent and driven by a transient release from inhibition mediated by somatostatin-positive interneurons. These data are consistent with a model in which L2/3 of V1 computes a difference between an inhibitory visual input and an excitatory locomotion-related input, where the balance between these two inputs is finely tuned by visuomotor experience.


Asunto(s)
Desempeño Psicomotor , Corteza Visual/fisiología , Animales , Retroalimentación Sensorial , Femenino , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Optogenética , Estimulación Luminosa , Corteza Visual/citología , Percepción Visual
3.
Annu Rev Neurosci ; 44: 221-252, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33730511

RESUMEN

Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning.


Asunto(s)
Neocórtex , Dendritas , Aprendizaje , Células Piramidales
4.
Annu Rev Neurosci ; 41: 163-183, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29618284

RESUMEN

The thalamus has long been suspected to have an important role in cognition, yet recent theories have favored a more corticocentric view. According to this view, the thalamus is an excitatory feedforward relay to or between cortical regions, and cognitively relevant computations are exclusively cortical. Here, we review anatomical, physiological, and behavioral studies along evolutionary and theoretical dimensions, arguing for essential and unique thalamic computations in cognition. Considering their architectural features as well as their ability to initiate, sustain, and switch cortical activity, thalamic circuits appear uniquely suited for computing contextual signals that rapidly reconfigure task-relevant cortical representations. We introduce a framework that formalizes this notion, show its consistency with several findings, and discuss its prediction of thalamic roles in perceptual inference and behavioral flexibility. Overall, our framework emphasizes an expanded view of the thalamus in cognitive computations and provides a roadmap to test several of its theoretical and experimental predictions.


Asunto(s)
Corteza Cerebral/fisiología , Cognición/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/anatomía & histología , Simulación por Computador , Humanos , Vías Nerviosas/anatomía & histología , Tálamo/anatomía & histología
5.
Proc Natl Acad Sci U S A ; 120(51): e2309058120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38085784

RESUMEN

Performing goal-directed movements requires mapping goals from extrinsic (workspace-relative) to intrinsic (body-relative) coordinates and then to motor signals. Mainstream approaches based on optimal control realize the mappings by minimizing cost functions, which is computationally demanding. Instead, active inference uses generative models to produce sensory predictions, which allows a cheaper inversion to the motor signals. However, devising generative models to control complex kinematic chains like the human body is challenging. We introduce an active inference architecture that affords a simple but effective mapping from extrinsic to intrinsic coordinates via inference and easily scales up to drive complex kinematic chains. Rich goals can be specified in both intrinsic and extrinsic coordinates using attractive or repulsive forces. The proposed model reproduces sophisticated bodily movements and paves the way for computationally efficient and biologically plausible control of actuated systems.


Asunto(s)
Algoritmos , Movimiento , Humanos , Fenómenos Biomecánicos , Motivación
6.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38561229

RESUMEN

Creating and evaluating predictions are considered important features in sensory perception. Little is known about processing differences between the senses and their cortical substrates. Here, we tested the hypothesis that olfaction, the sense of smell, would be highly dependent on (nonolfactory) object-predictive cues and involve distinct cortical processing features. We developed a novel paradigm to compare prediction error processing across senses. Participants listened to spoken word cues (e.g., "lilac") and determined whether target stimuli (odors or pictures) matched the word cue or not. In two behavioral experiments (total n = 113; 72 female), the disparity between congruent and incongruent response times was exaggerated for olfactory relative to visual targets, indicating a greater dependency on predictive verbal cues to process olfactory targets. A preregistered fMRI study (n = 30; 19 female) revealed the anterior cingulate cortex (a region central for error detection) being more activated by incongruent olfactory targets, indicating a role for olfactory predictive error processing. Additionally, both the primary olfactory and visual cortices were significantly activated for incongruent olfactory targets, suggesting olfactory prediction errors are dependent on cross-sensory processing resources, whereas visual prediction errors are not. We propose that olfaction is characterized by a strong dependency on predictive (nonolfactory) cues and that odors are evaluated in the context of such predictions by a designated transmodal cortical network. Our results indicate differences in how predictive cues are used by different senses in rapid decision-making.


Asunto(s)
Imagen por Resonancia Magnética , Percepción Olfatoria , Humanos , Femenino , Masculino , Adulto , Percepción Olfatoria/fisiología , Adulto Joven , Señales (Psicología) , Olfato/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Odorantes , Mapeo Encefálico , Adolescente , Tiempo de Reacción/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Estimulación Luminosa/métodos
7.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37963763

RESUMEN

Learning to process speech in a foreign language involves learning new representations for mapping the auditory signal to linguistic structure. Behavioral experiments suggest that even listeners that are highly proficient in a non-native language experience interference from representations of their native language. However, much of the evidence for such interference comes from tasks that may inadvertently increase the salience of native language competitors. Here we tested for neural evidence of proficiency and native language interference in a naturalistic story listening task. We studied electroencephalography responses of 39 native speakers of Dutch (14 male) to an English short story, spoken by a native speaker of either American English or Dutch. We modeled brain responses with multivariate temporal response functions, using acoustic and language models. We found evidence for activation of Dutch language statistics when listening to English, but only when it was spoken with a Dutch accent. This suggests that a naturalistic, monolingual setting decreases the interference from native language representations, whereas an accent in the listener's own native language may increase native language interference, by increasing the salience of the native language and activating native language phonetic and lexical representations. Brain responses suggest that such interference stems from words from the native language competing with the foreign language in a single word recognition system, rather than being activated in a parallel lexicon. We further found that secondary acoustic representations of speech (after 200 ms latency) decreased with increasing proficiency. This may reflect improved acoustic-phonetic models in more proficient listeners.Significance Statement Behavioral experiments suggest that native language knowledge interferes with foreign language listening, but such effects may be sensitive to task manipulations, as tasks that increase metalinguistic awareness may also increase native language interference. This highlights the need for studying non-native speech processing using naturalistic tasks. We measured neural responses unobtrusively while participants listened for comprehension and characterized the influence of proficiency at multiple levels of representation. We found that salience of the native language, as manipulated through speaker accent, affected activation of native language representations: significant evidence for activation of native language (Dutch) categories was only obtained when the speaker had a Dutch accent, whereas no significant interference was found to a speaker with a native (American) accent.


Asunto(s)
Percepción del Habla , Habla , Masculino , Humanos , Lenguaje , Fonética , Aprendizaje , Encéfalo , Percepción del Habla/fisiología
8.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37949655

RESUMEN

The key assumption of the predictive coding framework is that internal representations are used to generate predictions on how the sensory input will look like in the immediate future. These predictions are tested against the actual input by the so-called prediction error units, which encode the residuals of the predictions. What happens to prediction errors, however, if predictions drawn by different stages of the sensory hierarchy contradict each other? To answer this question, we conducted two fMRI experiments while female and male human participants listened to sequences of sounds: pure tones in the first experiment and frequency-modulated sweeps in the second experiment. In both experiments, we used repetition to induce predictions based on stimulus statistics (stats-informed predictions) and abstract rules disclosed in the task instructions to induce an orthogonal set of (task-informed) predictions. We tested three alternative scenarios: neural responses in the auditory sensory pathway encode prediction error with respect to (1) the stats-informed predictions, (2) the task-informed predictions, or (3) a combination of both. Results showed that neural populations in all recorded regions (bilateral inferior colliculus, medial geniculate body, and primary and secondary auditory cortices) encode prediction error with respect to a combination of the two orthogonal sets of predictions. The findings suggest that predictive coding exploits the non-linear architecture of the auditory pathway for the transmission of predictions. Such non-linear transmission of predictions might be crucial for the predictive coding of complex auditory signals like speech.Significance Statement Sensory systems exploit our subjective expectations to make sense of an overwhelming influx of sensory signals. It is still unclear how expectations at each stage of the processing pipeline are used to predict the representations at the other stages. The current view is that this transmission is hierarchical and linear. Here we measured fMRI responses in auditory cortex, sensory thalamus, and midbrain while we induced two sets of mutually inconsistent expectations on the sensory input, each putatively encoded at a different stage. We show that responses at all stages are concurrently shaped by both sets of expectations. The results challenge the hypothesis that expectations are transmitted linearly and provide for a normative explanation of the non-linear physiology of the corticofugal sensory system.


Asunto(s)
Corteza Auditiva , Vías Auditivas , Humanos , Masculino , Femenino , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Corteza Auditiva/fisiología , Encéfalo/fisiología , Sonido , Estimulación Acústica
9.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38262723

RESUMEN

Deviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for humans and multiple other species, from subthalamic areas to the auditory cortex. Cortical deviance detection has been well characterized by a range of studies using a variety of different stimuli, from artificial to natural, with and without a behavioral relevance. This allowed the identification of a broad variety of regularity deviations that are detected by the cortex. Moreover, subcortical deviance detection has been studied with simple stimuli that are not meaningful to the subject. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a highly vocal species: the bat Carollia perspicillata (of either sex). Our present approach uses behaviorally relevant vocalization stimuli that are similar to the animals' natural soundscape. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioral meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that the brain can detect different types of deviants already in the brainstem, showing that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.


Asunto(s)
Quirópteros , Animales , Humanos , Estimulación Acústica/métodos , Tronco Encefálico/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Sonido , Percepción Auditiva/fisiología
10.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38350998

RESUMEN

Human listeners possess an innate capacity to discern patterns within rapidly unfolding sensory input. Core questions, guiding ongoing research, focus on the mechanisms through which these representations are acquired and whether the brain prioritizes or suppresses predictable sensory signals. Previous work, using fast auditory sequences (tone-pips presented at a rate of 20 Hz), revealed sustained response effects that appear to track the dynamic predictability of the sequence. Here, we extend the investigation to slower sequences (4 Hz), permitting the isolation of responses to individual tones. Stimuli were 50 ms tone-pips, ordered into random (RND) and regular (REG; a repeating pattern of 10 frequencies) sequences; Two timing profiles were created: in "fast" sequences, tone-pips were presented in direct succession (20 Hz); in "slow" sequences, tone-pips were separated by a 200 ms silent gap (4 Hz). Naive participants (N = 22; both sexes) passively listened to these sequences, while brain responses were recorded using magnetoencephalography (MEG). Results unveiled a heightened magnitude of sustained brain responses in REG when compared to RND patterns. This manifested from three tones after the onset of the pattern repetition, even in the context of slower sequences characterized by extended pattern durations (2,500 ms). This observation underscores the remarkable implicit sensitivity of the auditory brain to acoustic regularities. Importantly, brain responses evoked by single tones exhibited the opposite pattern-stronger responses to tones in RND than REG sequences. The demonstration of simultaneous but opposing sustained and evoked response effects reveals concurrent processes that shape the representation of unfolding auditory patterns.


Asunto(s)
Corteza Auditiva , Percepción Auditiva , Masculino , Femenino , Humanos , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Encéfalo/fisiología , Magnetoencefalografía , Corteza Auditiva/fisiología
11.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38508711

RESUMEN

In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g., the rubber hand illusion, RHI), the synchronous stroking of the participant's concealed hand and a fake visible one creates a visuotactile conflict, generating a prediction error. Within the predictive coding framework, through sensory processing modulation, prediction errors are solved, inducing participants to feel as if touches originated from the fake hand, thus ascribing the fake hand to their own body. Here, we aimed to address sensory processing modulation under multisensory conflict, by disentangling somatosensory and visual stimuli processing that are intrinsically associated during the illusion induction. To this aim, we designed two EEG experiments, in which somatosensory- (SEPs; Experiment 1; N = 18; F = 10) and visual-evoked potentials (VEPs; Experiment 2; N = 18; F = 9) were recorded in human males and females following the RHI. Our results show that, in both experiments, ERP amplitude is significantly modulated in the illusion as compared with both control and baseline conditions, with a modality-dependent diametrical pattern showing decreased SEP amplitude and increased VEP amplitude. Importantly, both somatosensory and visual modulations occur in long-latency time windows previously associated with tactile and visual awareness, thus explaining the illusion of perceiving touch at the sight location. In conclusion, we describe a diametrical modulation of somatosensory and visual processing as the neural mechanism that allows maintaining a stable body representation, by restoring visuotactile congruency under the occurrence of multisensory conflicts.


Asunto(s)
Electroencefalografía , Potenciales Evocados Somatosensoriales , Potenciales Evocados Visuales , Ilusiones , Percepción Visual , Humanos , Masculino , Femenino , Adulto , Percepción Visual/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Adulto Joven , Ilusiones/fisiología , Potenciales Evocados Visuales/fisiología , Percepción del Tacto/fisiología , Estimulación Luminosa/métodos , Conflicto Psicológico , Corteza Somatosensorial/fisiología , Imagen Corporal
12.
Brain ; 147(8): 2854-2866, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637303

RESUMEN

The prediction error account of delusions has had success. However, its explanation of delusions with different contents has been lacking. Persecutory delusions and paranoia are the common unfounded beliefs that others have harmful intentions towards us. Other delusions include believing that one's thoughts or actions are under external control or that events in the world have specific personal meaning. We compare learning in two different cognitive tasks, probabilistic reversal learning and Kamin blocking, that have relationships to paranoid and non-paranoid delusion-like beliefs, respectively. We find that clinical high-risk status alone does not result in different behavioural results in the probabilistic reversal learning task but that an individual's level of paranoia is associated with excessive switching behaviour. During the Kamin blocking task, paranoid individuals learned inappropriately about the blocked cue. However, they also had decreased learning about the control cue, suggesting more general learning impairments. Non-paranoid delusion-like belief conviction (but not paranoia) was associated with aberrant learning about the blocked cue but intact learning about the control cue, suggesting specific impairments in learning related to cue combination. We fit task-specific computational models separately to behavioural data to explore how latent parameters vary within individuals between tasks and how they can explain symptom-specific effects. We find that paranoia is associated with low learning rates in the probabilistic reversal learning task and the blocking task. Non-paranoid delusion-like belief conviction is instead related to parameters controlling the degree and direction of similarity between cue updating during simultaneous cue presentation. These results suggest that paranoia and other delusion-like beliefs involve dissociable deficits in learning and belief updating, which, given the transdiagnostic status of paranoia, might have differential utility in predicting psychosis.


Asunto(s)
Deluciones , Trastornos Paranoides , Humanos , Deluciones/psicología , Masculino , Femenino , Adulto Joven , Adulto , Trastornos Paranoides/psicología , Aprendizaje Inverso/fisiología , Adolescente , Cultura , Señales (Psicología)
13.
Brain ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110638

RESUMEN

Developmental dyslexia (DD) is one of the most common learning disorders, affecting millions of children and adults worldwide. To date, scientific research has attempted to explain DD primarily based on pathophysiological alterations in the cerebral cortex. In contrast, several decades ago, pioneering research on five post-mortem human brains suggested that a core characteristic of DD might be morphological alterations in a specific subdivision of the visual thalamus - the magnocellular LGN (M-LGN). However, due to considerable technical challenges in investigating LGN subdivisions non-invasively in humans, this finding was never confirmed in-vivo, and its relevance for DD pathology remained highly controversial. Here, we leveraged recent advances in high-resolution magnetic resonance imaging (MRI) at high field strength (7 Tesla) to investigate the M-LGN in DD in-vivo. Using a case-control design, we acquired data from a large sample of young adults with DD (n = 26; age 28 ± 7 years; 13 females) and matched control participants (n = 28; age 27 ± 6 years; 15 females). Each participant completed a comprehensive diagnostic behavioral test battery and participated in two MRI sessions, including three functional MRI experiments and one structural MRI acquisition. We measured blood-oxygen-level-dependent responses and longitudinal relaxation rates to compare both groups on LGN subdivision function and myelination. Based on previous research, we hypothesized that the M-LGN is altered in DD and that these alterations are associated with a key DD diagnostic score, i.e., rapid letter and number naming (RANln). The results showed aberrant responses of the M-LGN in DD compared to controls, which was reflected in a different functional lateralization of this subdivision between groups. These alterations were associated with RANln performance, specifically in male DD. We also found lateralization differences in the longitudinal relaxation rates of the M-LGN in DD relative to controls. Conversely, the other main subdivision of the LGN, the parvocellular LGN (P-LGN), showed comparable blood-oxygen-level-dependent responses and longitudinal relaxation rates between groups. The present study is the first to unequivocally show that M-LGN alterations are a hallmark of DD, affecting both the function and microstructure of this subdivision. It further provides a first functional interpretation of M-LGN alterations and a basis for a better understanding of sex-specific differences in DD with implications for prospective diagnostic and treatment strategies.

14.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466116

RESUMEN

Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, prediction error response to duration change is reduced in the initial stages of psychotic disorders. To compare the spatiotemporal profiles of responses to prediction errors, we conducted a human electrocorticography study with special attention to high gamma power in 13 participants who completed both frequency and duration oddball tasks. Remarkable activation in the bilateral superior temporal gyri in both the frequency and duration oddball tasks were observed, suggesting their association with prediction errors. However, the response to deviant stimuli in duration oddball task exhibited a second peak, which resulted in a bimodal response. Furthermore, deviant stimuli in frequency oddball task elicited a significant response in the inferior frontal gyrus that was not observed in duration oddball task. These spatiotemporal differences within the Parasylvian cortical network could account for our efficient reactions to changes in sound properties. The findings of this study may contribute to unveiling auditory processing and elucidating the pathophysiology of psychiatric disorders.


Asunto(s)
Encéfalo , Electrocorticografía , Humanos , Corteza Prefrontal , Sonido , Percepción Auditiva
15.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39110411

RESUMEN

Speech perception requires the binding of spatiotemporally disjoint auditory-visual cues. The corresponding brain network-level information processing can be characterized by two complementary mechanisms: functional segregation which refers to the localization of processing in either isolated or distributed modules across the brain, and integration which pertains to cooperation among relevant functional modules. Here, we demonstrate using functional magnetic resonance imaging recordings that subjective perceptual experience of multisensory speech stimuli, real and illusory, are represented in differential states of segregation-integration. We controlled the inter-subject variability of illusory/cross-modal perception parametrically, by introducing temporal lags in the incongruent auditory-visual articulations of speech sounds within the McGurk paradigm. The states of segregation-integration balance were captured using two alternative computational approaches. First, the module responsible for cross-modal binding of sensory signals defined as the perceptual binding network (PBN) was identified using standardized parametric statistical approaches and their temporal correlations with all other brain areas were computed. With increasing illusory perception, the majority of the nodes of PBN showed decreased cooperation with the rest of the brain, reflecting states of high segregation but reduced global integration. Second, using graph theoretic measures, the altered patterns of segregation-integration were cross-validated.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Percepción del Habla , Percepción Visual , Humanos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Adulto , Adulto Joven , Percepción del Habla/fisiología , Percepción Visual/fisiología , Mapeo Encefálico , Estimulación Acústica , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Estimulación Luminosa/métodos , Ilusiones/fisiología , Vías Nerviosas/fisiología , Percepción Auditiva/fisiología
16.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087881

RESUMEN

Perception integrates both sensory inputs and internal models of the environment. In the auditory domain, predictions play a critical role because of the temporal nature of sounds. However, the precise contribution of cortical and subcortical structures in these processes and their interaction remain unclear. It is also unclear whether these brain interactions are specific to abstract rules or if they also underlie the predictive coding of local features. We used high-field 7T functional magnetic resonance imaging to investigate interactions between cortical and subcortical areas during auditory predictive processing. Volunteers listened to tone sequences in an oddball paradigm where the predictability of the deviant was manipulated. Perturbations in periodicity were also introduced to test the specificity of the response. Results indicate that both cortical and subcortical auditory structures encode high-order predictive dynamics, with the effect of predictability being strongest in the auditory cortex. These predictive dynamics were best explained by modeling a top-down information flow, in contrast to unpredicted responses. No error signals were observed to deviations of periodicity, suggesting that these responses are specific to abstract rule violations. Our results support the idea that the high-order predictive dynamics observed in subcortical areas propagate from the auditory cortex.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Percepción Auditiva , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Adulto , Percepción Auditiva/fisiología , Adulto Joven , Estimulación Acústica/métodos , Corteza Auditiva/fisiología , Corteza Auditiva/diagnóstico por imagen , Mapeo Encefálico/métodos
17.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615240

RESUMEN

The mismatch negativity and the P3a of the event-related EEG potential reflect the electrocortical response to a deviant stimulus in a series of stimuli. Although both components have been investigated in various paradigms, these paradigms usually incorporate many repetitions of the same deviant, thus leaving open whether both components vary as a function of the deviant's position in a series of deviant stimuli-i.e. whether they are subject to qualitative/quantitative habituation from one instantiation of a deviant to the next. This is so because the detection of mismatch negativity/P3a in the event-related EEG potential requires an averaging over dozens or hundreds of stimuli, i.e. over many instantiations of the deviant per participant. The present study addresses this research gap. We used a two-tone oddball paradigm implementing only a small number of (deviant) stimuli per participant, but applying it to a large number of participants (n > 230). Our data show that the mismatch negativity amplitude exhibits no decrease as a function of the deviant's position in a series of (standard and) deviant stimuli. Importantly, only after the very first deviant stimulus, a distinct P3a could be detected, indicative of an orienting reaction and an attention shift, and thus documenting a dissociation of mismatch negativity and P3a.


Asunto(s)
Cafeína , Habituación Psicofisiológica , Humanos , Potenciales Evocados , Electroencefalografía
18.
Annu Rev Psychol ; 75: 129-154, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37758238

RESUMEN

Much evidence has shown that perception is biased towards previously presented similar stimuli, an effect recently termed serial dependence. Serial dependence affects nearly every aspect of perception, often causing gross perceptual distortions, especially for weak and ambiguous stimuli. Despite unwanted side-effects, empirical evidence and Bayesian modeling show that serial dependence acts to improve efficiency and is generally beneficial to the system. Consistent with models of predictive coding, the Bayesian priors of serial dependence are generated at high levels of cortical analysis, incorporating much perceptual experience, but feed back to lower sensory areas. These feedback loops may drive oscillations in the alpha range, linked strongly with serial dependence. The discovery of top-down predictive perceptual processes is not new, but the new, more quantitative approach characterizing serial dependence promises to lead to a deeper understanding of predictive perceptual processes and their underlying neural mechanisms.


Asunto(s)
Percepción , Humanos , Teorema de Bayes
19.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983852

RESUMEN

The perception of pain is shaped by somatosensory information about threat. However, pain is also influenced by an individual's expectations. Such expectations can result in clinically relevant modulations and abnormalities of pain. In the brain, sensory information, expectations (predictions), and discrepancies thereof (prediction errors) are signaled by an extended network of brain areas which generate evoked potentials and oscillatory responses at different latencies and frequencies. However, a comprehensive picture of how evoked and oscillatory brain responses signal sensory information, predictions, and prediction errors in the processing of pain is lacking so far. Here, we therefore applied brief painful stimuli to 48 healthy human participants and independently modulated sensory information (stimulus intensity) and expectations of pain intensity while measuring brain activity using electroencephalography (EEG). Pain ratings confirmed that pain intensity was shaped by both sensory information and expectations. In contrast, Bayesian analyses revealed that stimulus-induced EEG responses at different latencies (the N1, N2, and P2 components) and frequencies (alpha, beta, and gamma oscillations) were shaped by sensory information but not by expectations. Expectations, however, shaped alpha and beta oscillations before the painful stimuli. These findings indicate that commonly analyzed EEG responses to painful stimuli are more involved in signaling sensory information than in signaling expectations or mismatches of sensory information and expectations. Moreover, they indicate that the effects of expectations on pain are served by brain mechanisms which differ from those conveying effects of sensory information on pain.


Asunto(s)
Encéfalo/fisiopatología , Dolor/fisiopatología , Transducción de Señal , Teorema de Bayes , Electroencefalografía , Humanos , Dimensión del Dolor
20.
Proc Natl Acad Sci U S A ; 119(30): e2204379119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858450

RESUMEN

Prediction errors guide many forms of learning, providing teaching signals that help us improve our performance. Implicit motor adaptation, for instance, is thought to be driven by sensory prediction errors (SPEs), which occur when the expected and observed consequences of a movement differ. Traditionally, SPE computation is thought to require movement execution. However, recent work suggesting that the brain can generate sensory predictions based on motor imagery or planning alone calls this assumption into question. Here, by measuring implicit motor adaptation during a visuomotor task, we tested whether motor planning and well-timed sensory feedback are sufficient for adaptation. Human participants were cued to reach to a target and were, on a subset of trials, rapidly cued to withhold these movements. Errors displayed both on trials with and without movements induced single-trial adaptation. Learning following trials without movements persisted even when movement trials had never been paired with errors and when the direction of movement and sensory feedback trajectories were decoupled. These observations indicate that the brain can compute errors that drive implicit adaptation without generating overt movements, leading to the adaptation of motor commands that are not overtly produced.


Asunto(s)
Aprendizaje , Desempeño Psicomotor , Adaptación Fisiológica , Retroalimentación Sensorial , Humanos , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA