Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.259
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(15): 4010-4029.e16, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917790

RESUMEN

Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.


Asunto(s)
Blastocisto , Diferenciación Celular , Endodermo , Animales , Endodermo/metabolismo , Endodermo/citología , Ratones , Blastocisto/metabolismo , Blastocisto/citología , Linaje de la Célula , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Transducción de Señal , Desarrollo Embrionario , Quinasas Janus/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción STAT/metabolismo , Factores de Transcripción/metabolismo , Femenino , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología
2.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38744282

RESUMEN

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Asunto(s)
Blastómeros , Linaje de la Célula , Embrión de Mamíferos , Femenino , Humanos , Blastómeros/citología , Blastómeros/metabolismo , División Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Masculino , Animales , Ratones
3.
Cell ; 186(15): 3166-3181.e18, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413989

RESUMEN

Proper preimplantation development is essential to assemble a blastocyst capable of implantation. Live imaging has uncovered major events driving early development in mouse embryos; yet, studies in humans have been limited by restrictions on genetic manipulation and lack of imaging approaches. We have overcome this barrier by combining fluorescent dyes with live imaging to reveal the dynamics of chromosome segregation, compaction, polarization, blastocyst formation, and hatching in the human embryo. We also show that blastocyst expansion mechanically constrains trophectoderm cells, causing nuclear budding and DNA shedding into the cytoplasm. Furthermore, cells with lower perinuclear keratin levels are more prone to undergo DNA loss. Moreover, applying trophectoderm biopsy, a mechanical procedure performed clinically for genetic testing, increases DNA shedding. Thus, our work reveals distinct processes underlying human development compared with mouse and suggests that aneuploidies in human embryos may not only originate from chromosome segregation errors during mitosis but also from nuclear DNA shedding.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Animales , Ratones , Diagnóstico Preimplantación/métodos , Blastocisto , Implantación del Embrión , Pruebas Genéticas/métodos , Aneuploidia , Biopsia/métodos
4.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858625

RESUMEN

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Asunto(s)
Rotura Cromosómica , Segregación Cromosómica , Aneuploidia , Animales , ADN , Replicación del ADN , Desarrollo Embrionario/genética , Humanos , Mamíferos/genética
5.
Cell ; 184(22): 5541-5558.e22, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34644528

RESUMEN

Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.


Asunto(s)
Secuencia Conservada , Desarrollo Embrionario/genética , Proteínas Quinasas/metabolismo , Retroelementos/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Secuencia de Bases , Blastocisto/metabolismo , Proliferación Celular , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Mamíferos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo
6.
Cell ; 179(6): 1424-1435.e8, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761530

RESUMEN

The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.


Asunto(s)
Embrión de Mamíferos/metabolismo , Pruebas Genéticas , Herencia Multifactorial/genética , Adulto , Familia , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
7.
Cell ; 175(7): 1902-1916.e13, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550788

RESUMEN

Nuclear architecture has never been carefully examined during early mammalian development at the stages leading to establishment of the embryonic and extra-embryonic lineages. Heterogeneous activity of the methyltransferase CARM1 during these stages results in differential methylation of histone H3R26 to modulate establishment of these two lineages. Here we show that CARM1 accumulates in nuclear granules at the 2- to 4-cell stage transition in the mouse embryo, with the majority corresponding to paraspeckles. The paraspeckle component Neat1 and its partner p54nrb are required for CARM1's association with paraspeckles and for H3R26 methylation. Conversely, CARM1 also influences paraspeckle organization. Depletion of Neat1 or p54nrb results in arrest at the 16- to 32-cell stage, with elevated expression of transcription factor Cdx2, promoting differentiation into the extra-embryonic lineage. This developmental arrest occurs at an earlier stage than following CARM1 depletion, indicating that paraspeckles act upstream of CARM1 but also have additional earlier roles in fate choice.


Asunto(s)
Blastocisto/metabolismo , Diferenciación Celular , Linaje de la Célula , Desarrollo Embrionario , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Blastocisto/citología , Puntos de Control del Ciclo Celular , Ratones , Proteínas Asociadas a Matriz Nuclear/genética , Proteína-Arginina N-Metiltransferasas/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética
8.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
9.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38458200

RESUMEN

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Femenino , Ratones , Masculino , Animales , Inactivación del Cromosoma X/genética , Impresión Genómica , Células Germinativas , Epigénesis Genética , Embrión de Mamíferos , ARN Largo no Codificante/genética , Cromosoma X/genética , Mamíferos/genética
10.
Physiol Rev ; 103(3): 1965-2038, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796099

RESUMEN

Pregnancy is established during the periconceptional period as a continuum beginning with blastocyst attachment to the endometrial epithelial surface followed by embryo invasion and placenta formation. This period sets the foundation for the child and mother's health during pregnancy. Emerging evidence indicates that prevention of downstream pathologies in both the embryo/newborn and pregnant mother may be possible at this stage. In this review, we discuss current advances in the periconceptional space, including the preimplantation human embryo and maternal endometrium. We also discuss the role of the maternal decidua, the periconceptional maternal-embryonic interface, the dialogue between these elements, and the importance of the endometrial microbiome in the implantation process and pregnancy. Finally, we discuss the myometrium in the periconceptional space and review its role in determining pregnancy health.


Asunto(s)
Implantación del Embrión , Endometrio , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Blastocisto , Placenta
11.
Trends Genet ; 40(1): 39-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949723

RESUMEN

Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.


Asunto(s)
Genoma , Retroelementos , Animales , Retroelementos/genética , Cigoto , Desarrollo Embrionario/genética , Mamíferos/genética
12.
EMBO J ; 42(17): e114415, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37427462

RESUMEN

Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition.


Asunto(s)
Actomiosina , Cuerpos Polares , Humanos , Animales , Ratones , Cuerpos Polares/metabolismo , Actomiosina/metabolismo , Blastocisto , Cromosomas , Meiosis , Oocitos/metabolismo , Huso Acromático/genética , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
13.
Am J Hum Genet ; 110(4): 565-574, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977411

RESUMEN

Preimplantation genetic testing commonly employs simplistic copy-number analyses to screen for aneuploidy in blastocyst trophectoderm biopsies. Interpreting intermediate copy number alone as evidence of mosaicism has led to suboptimal estimation of its prevalence. Because mosaicism originates from mitotic nondisjunction, utilizing SNP microarray technology to identify the cell-division origins of aneuploidy might provide a more accurate estimation of its prevalence. The present study develops and validates a method of determining the cell-division origin of aneuploidy in the human blastocyst by using both genotyping and copy-number data in parallel. The concordance of predicted origins with expected results was demonstrated in a series of truth models (99%-100%). This included determination of X chromosome origins from a subset of normal male embryos, determination of the origins of translocation chromosome-related imbalances via embryos from couples with structural rearrangements, and prediction of either mitotic or meiotic origins via multiple rebiopsies of embryos with aneuploidy. In a cohort of blastocysts with parental DNA (n = 2,277), 71% were euploid, 27% were meiotic aneuploid, and 2% were mitotic aneuploid, indicating a low frequency of bona fide mosaicism in the human blastocyst (mean maternal age: 34.4). Chromosome-specific trisomies in the blastocyst were also consistent with observations previously established in products of conception. The ability to accurately identify mitotic-origin aneuploidy in the blastocyst could benefit and better inform individuals whose IVF cycle results in all aneuploid embryos. Clinical trials with this methodology might also help provide a definitive answer regarding the reproductive potential of bona fide mosaic embryos.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Masculino , Adulto , Diagnóstico Preimplantación/métodos , Blastocisto , Aneuploidia , Pruebas Genéticas/métodos , Mosaicismo
14.
Am J Hum Genet ; 110(12): 2092-2102, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38029743

RESUMEN

Aneuploidy frequently arises during human meiosis and is the primary cause of early miscarriage and in vitro fertilization (IVF) failure. Individuals undergoing IVF exhibit significant variability in aneuploidy rates, although the exact genetic causes of the variability in aneuploid egg production remain unclear. Preimplantation genetic testing for aneuploidy (PGT-A) using next-generation sequencing is a standard test for identifying and selecting IVF-derived euploid embryos. The wealth of embryo aneuploidy data and ultra-low coverage whole-genome sequencing (ulc-WGS) data from PGT-A have the potential to discover variants in parental genomes that are associated with aneuploidy risk in their embryos. Using ulc-WGS data from ∼10,000 PGT-A biopsies, we imputed genotype likelihoods of genetic variants in embryo genomes. We then used the imputed variants and embryo aneuploidy calls to perform a genome-wide association study of aneuploidy incidence. Finally, we carried out functional evaluation of the identified candidate gene in a mouse oocyte system. We identified one locus on chromosome 3 that is significantly associated with meiotic aneuploidy risk. One candidate gene, CCDC66, encompassed by this locus, is involved in chromosome segregation during meiosis. Using mouse oocytes, we showed that CCDC66 regulates meiotic progression and chromosome segregation fidelity, especially in older mice. Our work extended the research utility of PGT-A ulc-WGS data by allowing robust association testing and improved the understanding of the genetic contribution to maternal meiotic aneuploidy risk. Importantly, we introduce a generalizable method that has potential to be leveraged for similar association studies that use ulc-WGS data.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Animales , Ratones , Diagnóstico Preimplantación/métodos , Estudio de Asociación del Genoma Completo , Pruebas Genéticas/métodos , Fertilización In Vitro , Aneuploidia , Blastocisto , Proteínas del Ojo
15.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37435786

RESUMEN

The preimplantation mammalian (including mouse and human) embryo holds remarkable regulatory abilities, which have found their application, for example, in the preimplantation genetic diagnosis of human embryos. Another manifestation of this developmental plasticity is the possibility of obtaining chimaeras by combining either two embryos or embryos and pluripotent stem cells, which enables the verification of the cell pluripotency and generation of genetically modified animals used to elucidate gene function. Using mouse chimaeric embryos (constructed by injection of embryonic stem cells into the eight-cell embryos) as a tool, we aimed to explore the mechanisms underlying the regulatory nature of the preimplantation mouse embryo. We comprehensively demonstrated the functioning of a multi-level regulatory mechanism involving FGF4/MAPK signalling as a leading player in the communication between both components of the chimaera. This pathway, coupled with apoptosis, the cleavage division pattern and cell cycle duration controlling the size of the embryonic stem cell component and giving it a competitive advantage over host embryo blastomeres, provides a cellular and molecular basis for regulative development, ensuring the generation of the embryo characterised by proper cellular composition.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Animales , Humanos , Ratones , Apoptosis/genética , Blastocisto/metabolismo , Blastómeros , Desarrollo Embrionario/genética , Células Madre Embrionarias , Mamíferos
16.
EMBO Rep ; 25(4): 1721-1733, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528171

RESUMEN

Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica , Animales , Elementos Transponibles de ADN/genética , Evolución Biológica , Cromatina/genética , Embrión de Mamíferos , Evolución Molecular , Mamíferos/genética
17.
Dev Biol ; 511: 53-62, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593904

RESUMEN

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Factores Asociados con la Proteína de Unión a TATA , Animales , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Ratones , Desarrollo Embrionario/genética , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Femenino , Blastocisto/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Gastrulación/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Embrión de Mamíferos/metabolismo
18.
Am J Hum Genet ; 109(9): 1572-1581, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055209

RESUMEN

In IVF cycles, the application of aneuploidy testing at the blastocyst stage is quickly growing, and the latest reports estimate almost half of cycles in the US undergo preimplantation genetic testing for aneuploidies (PGT-A). Following PGT-A cycles, understanding the predictive value of an aneuploidy result is paramount for making informed decisions about the embryo's fate and utilization. Compelling evidence from non-selection trials strongly supports that embryos diagnosed with a uniform whole-chromosome aneuploidy very rarely result in the live birth of a healthy baby, while their transfer exposes women to significant risks of miscarriage and chromosomally abnormal pregnancy. On the other hand, embryos displaying low range mosaicism for whole chromosomes have shown reproductive capabilities somewhat equivalent to uniformly euploid embryos, and they have comparable clinical outcomes and gestational risks. Therefore, given their clearly distinct biological origin and clinical consequences, careful differentiation between uniform and mosaic aneuploidy is critical in both the clinical setting when counseling individuals and in the research setting when presenting aneuploidy studies in human embryology. Here, we focus on the evidence gathered so far on PGT-A diagnostic predictive values and reproductive outcomes observed across the broad spectrum of whole-chromosome aneuploidies detected at the blastocyst stage to obtain evidence-based conclusions on the clinical management of aneuploid embryos in the quickly growing PGT-A clinical setting.


Asunto(s)
Diagnóstico Preimplantación , Aneuploidia , Blastocisto , Femenino , Fertilización In Vitro , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nacimiento Vivo , Mosaicismo , Embarazo
19.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575026

RESUMEN

The genome is transcriptionally inert at fertilization and must be activated through a remarkable developmental process called zygotic genome activation (ZGA). Epigenetic reprogramming contributes significantly to the dynamic gene expression during ZGA; however, the mechanism has yet to be resolved. Here, we find histone deacetylases 1 and 2 (HDAC1/2) can regulate ZGA through lysine deacetylase activity. Notably, in mouse embryos, overexpression of a HDAC1/2 dominant-negative mutant leads to developmental arrest at the two-cell stage. RNA-seq reveals that 64% of downregulated genes are ZGA genes and 49% of upregulated genes are developmental genes. Inhibition of the deacetylase activity of HDAC1/2 causes a failure of histone deacetylation at multiple sites, including H4K5, H4K16, H3K14, H3K18 and H3K27. ChIP-seq analysis exhibits an increase and decrease of H3K27ac enrichment at promoters of up- and downregulated genes, respectively. Moreover, HDAC1 mutants prohibit the removal of H3K4me3 by impeding expression of Kdm5 genes. Importantly, the developmental block can be greatly rescued by Kdm5b injection and by partially correcting the expression of the majority of dysregulated genes. Similar functional significance of HDAC1/2 is conserved in bovine embryos. Overall, we propose that HDAC1/2 are indispensable for ZGA by creating correct transcriptional repressive and active states in mouse and bovine embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Cigoto , Animales , Bovinos , Genoma , Lisina/metabolismo , Ratones , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Cigoto/metabolismo
20.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36227586

RESUMEN

High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Embarazo , Femenino , Bovinos , Animales , Desarrollo Embrionario/genética , Mórula/metabolismo , Blastocisto/metabolismo , Oocitos/metabolismo , Ribosomas/genética , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA