Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2315648121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669182

RESUMEN

We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies-in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)-is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.

2.
Proc Natl Acad Sci U S A ; 120(15): e2212489120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011212

RESUMEN

Mechanical instabilities, especially in the form of bistable and multistable mechanisms, have recently garnered a lot of interest as a mode of improving the capabilities and increasing the functionalities of soft robots, structures, and soft mechanical systems in general. Although bistable mechanisms have shown high tunability through the variation of their material and design variables, they lack the option of modifying their attributes dynamically during operation. Here, we propose a facile approach to overcome this limitation by dispersing magnetically active microparticles throughout the structure of bistable elements and using an external magnetic field to tune their responses. We experimentally demonstrate and numerically verify the predictable and deterministic control of the response of different types of bistable elements under varying magnetic fields. Additionally, we show how this approach can be used to induce bistability in intrinsically monostable structures simply by placing them in a controlled magnetic field. Furthermore, we show the application of this strategy in precisely controlling the features (e.g., velocity and direction) of transition waves propagating in a multistable lattice created by cascading a chain of individual bistable elements. Moreover, we can implement active elements like a transistor (gate controlled by magnetic fields) or magnetically reconfigurable functional elements like binary logic gates for processing mechanical signals. This strategy serves to provide programming and tuning capabilities required to allow more extensive utilization of mechanical instabilities in soft systems with potential functions such as soft robotic locomotion, sensing and triggering elements, mechanical computation, and reconfigurable devices.

3.
Proc Natl Acad Sci U S A ; 115(22): 5698-5702, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29765000

RESUMEN

In most macroscale robotic systems, propulsion and controls are enabled through a physical tether or complex onboard electronics and batteries. A tether simplifies the design process but limits the range of motion of the robot, while onboard controls and power supplies are heavy and complicate the design process. Here, we present a simple design principle for an untethered, soft swimming robot with preprogrammed, directional propulsion without a battery or onboard electronics. Locomotion is achieved by using actuators that harness the large displacements of bistable elements triggered by surrounding temperature changes. Powered by shape memory polymer (SMP) muscles, the bistable elements in turn actuate the robot's fins. Our robots are fabricated using a commercially available 3D printer in a single print. As a proof of concept, we show the ability to program a vessel, which can autonomously deliver a cargo and navigate back to the deployment point.

4.
Molecules ; 26(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498348

RESUMEN

For soft robotics and programmable metamaterials, novel approaches are required enabling the design of highly integrated thermoresponsive actuating systems. In the concept presented here, the necessary functional component was obtained by polymer syntheses. First, poly(1,10-decylene adipate) diol (PDA) with a number average molecular weight M n of 3290 g·mol-1 was synthesized from 1,10-decanediol and adipic acid. Afterward, the PDA was brought to reaction with 4,4'-diphenylmethane diisocyanate and 1,4-butanediol. The resulting polyester urethane (PEU) was processed to the filament, and samples were additively manufactured by fused-filament fabrication. After thermomechanical treatment, the PEU reliably actuated under stress-free conditions by expanding on cooling and shrinking on heating with a maximum thermoreversible strain of 16.1%. Actuation stabilized at 12.2%, as verified in a measurement comprising 100 heating-cooling cycles. By adding an actuator element to a gripper system, a hen's egg could be picked up, safely transported and deposited. Finally, one actuator element each was built into two types of unit cells for programmable materials, thus enabling the design of temperature-dependent behavior. The approaches are expected to open up new opportunities, e.g., in the fields of soft robotics and shape morphing.


Asunto(s)
Polímeros/química , Impresión Tridimensional , Robótica , Materiales Inteligentes/química , Animales , Butileno Glicoles/química , Pollos , Femenino , Poliésteres/química , Temperatura
5.
Nano Lett ; 17(4): 2473-2481, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28281764

RESUMEN

Current interest in two-dimensional (2D) materials is driven in part by the ability to dramatically alter their optoelectronic properties through strain and phase engineering. A combination of these approaches can be applied in quasi-2D transition metal dichalcogenide (TMD) monolayers to induce displacive structural transformations between semiconducting (H) and metallic/semimetallic (T') phases. We classify such transformations in Group VI TMDs, and formulate a multiscale, first-principles-informed modeling framework to describe evolution of microstructural domain morphologies in elastically bendable 2D monolayers. We demonstrate that morphology and mechanical response can be controlled via application of strain either uniformly or through local probes to generate functionally patterned conductive T' domains. Such systems form dynamically programmable electromechanical 2D materials, capable of rapid local switching between domains with qualitatively different transport properties. This enables dynamic "drawing" of localized conducting regions in an otherwise semiconducting TMD monolayer, opening several interesting device-relevant functionalities such as the ability to dynamically "rewire" a device in real time.

6.
Angew Chem Int Ed Engl ; 56(7): 1794-1798, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28071851

RESUMEN

The creation of adaptive matter is heavily inspired by biological systems. However, it remains challenging to design complex material responses that are governed by reaction networks, which lie at the heart of cellular complexity. The main reason for this slow progress is the lack of a general strategy to integrate reaction networks with materials. Herein we use a systematic approach to preprogram the response of a hydrogel to a trigger, in this case the enzyme trypsin, which activates a reaction network embedded within the hydrogel. A full characterization of all the kinetic rate constants in the system enabled the construction of a computational model, which predicted different hydrogel responses depending on the input concentration of the trigger. The results of the simulation are in good agreement with experimental findings. Our methodology can be used to design new, adaptive materials of which the properties are governed by reaction networks of arbitrary complexity.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Tripsina/química , Resinas Acrílicas/química , Biocatálisis , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Cinética , Transición de Fase
7.
Nano Lett ; 15(4): 2213-9, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25393204

RESUMEN

Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.

8.
Adv Mater ; 36(8): e2305846, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37714519

RESUMEN

Programmable architected materials with the capabilities of precisely storing predefined mechanical behaviors and adaptive deformation responses upon external stimulations are desirable to help increase the performance and the organic integration of materials with surrounding environments. Here, a new approach inspired by the physical metallurgical principles is proposed to allow the materials designers to not only enhance the global strength but also precisely tune mechanical properties (such as strength, modulus, and plastic deformation) locally in architected materials to create a new class of intelligent mechanical metamaterials. Such programmable materials not only have high strength and plastic deformation stability but also the ability to regulate the local deformation states and spatially control the internal propagation of deformation. This innovative approach also provides new and effective ways to enhance the adaptivity of the materials thanks to responsive strengths that not only make the materials increasingly stronger but also allow threshold-based adaptive responses to external loading.

9.
Adv Mater ; 36(27): e2313125, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38629439

RESUMEN

Self-sealing is one of the fascinating functions in nature that enables living material systems to respond immediately to damage. A prime plant model is Delosperma cooperi, which can rapidly self-seal damaged succulent leaves by systematically deforming until the wound closes. Inspired by this self-sealing principle, a novel programmable mechanical metamaterial has been developed to mimic the underlying damage management concept. This material is able to react autonomously to changes in its physical condition caused by an induced damage. To design this ability into the programmable metamaterial, a permeable unit cell design has been developed that can change size depending on the internal pressure. The parameter space and associated mechanical functionality of the unit cell design is simulated and analyzed under periodic boundary conditions and various pressures. The principles of self-sealing behavior in designed metamaterials are investigated, crack closure efficiency is identified for different crack lengths, the limitations of the proposed approach are discussed, and successful crack closure is experimentally demonstrated in the fabricated metamaterial. Although this study facilitates the first step on the way of integrating new bio-inspired principles in the metamaterials, the results show how programmable mechanical metamaterials might extend materials design space from pure properties to life-like abilities.

10.
Adv Sci (Weinh) ; 10(34): e2304506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814364

RESUMEN

Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.

11.
ACS Nano ; 16(8): 11842-11851, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867936

RESUMEN

Liquid-liquid phase separation (LLPS) is a common phenomenon underlying the formation of dynamic membraneless organelles in biological cells, which are emerging as major players in controlling cellular functions and health. The bottom-up synthesis of biomolecular liquid systems with simple constituents, like nucleic acids and peptides, is useful to understand LLPS in nature as well as to develop programmable means to build new amorphous materials with properties matching or surpassing those observed in natural condensates. In particular, understanding which parameters determine condensate growth kinetics is essential for the synthesis of condensates with the capacity for active, dynamic behaviors. Here we use DNA nanotechnology to study artificial liquid condensates through programmable star-shaped subunits, focusing on the effects of changing subunit size. First, we show that LLPS is achieved in a 6-fold range of subunit size. Second, we demonstrate that the rate of growth of condensate droplets scales with subunit size. Our investigation is supported by a general model that describes how coarsening and coalescence are expected to scale with subunit size under ideal assumptions. Beyond suggesting a route toward achieving control of LLPS kinetics via design of subunit size in synthetic liquids, our work suggests that particle size may be a key parameter in biological condensation processes.


Asunto(s)
ADN , Ácidos Nucleicos
12.
Front Bioeng Biotechnol ; 10: 903982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774061

RESUMEN

We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.

13.
Soft Robot ; 9(1): 89-97, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33275532

RESUMEN

Programmable materials have artificially designed physical shapes responding to external stimuli, as well as high design capability and high flexibility. Here, we propose a microfiber-shaped programmable material with an axial pattern of stimuli-responsive (SR) and nonresponsive hydrogels. The SR pre-gel solution was mixed to sodium alginate pre-gel solution for instantaneous gelation with ionic crosslinking and solidified on a nonresponsive hydrogel microfiber with a valve-controlled microfluidic system. A design of microfiber-shaped programmable material (patterned position of SR regions) could be flexibly altered by changing a coded sequence program. We confirmed that the three-dimensional (3D) coil-like structures were self-folded at the patterned SR regions responding to the thermal stimulus and that the chirality of the self-folded 3D coil-like structures depends on the condition of the stimulus to the microfiber. Finally, interaction with objects using the programmable microfiber as a soft actuator was demonstrated. Our microfiber-shaped programmable materials expand possibilities of fiber-based materials in biomimetics and soft robotics fields.


Asunto(s)
Hidrogeles , Robótica , Alginatos , Biomimética , Hidrogeles/química , Microfluídica
14.
ACS Appl Mater Interfaces ; 14(17): 20073-20082, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35439417

RESUMEN

It is challenging to design complex synthetic life-like systems that can show both autoevolution and fuel-driven transient behaviors. Here, we report a new class of chemical reaction networks (CRNs) to construct life-like polymer hydrogels. The CRNs are constituted of autocatalytic cascade reactions and fuel-driven reaction networks. The reactions start with only two compounds, that is, thiol of 4-arm-PEG-SH and thiuram disulfides, and undergo thiol oxidation (k1), disulfide metathesis (k2), and thionate hydrolysis-coupling reactions (k3) subsequently, leading to a four-state autonomous transition of sol(I) → soft gel → sol(II) → stiff gel. Moreover, thiuram disulfides can be applied as a fuel to drive the repeated occurrence of metathesis and hydrolysis-coupling reactions, generating dissipative stiff gel → sol(II) → stiff gel cycles. Systematic kinetics studies reveal that the event and lifetime of every transient state could be delicately tailored-up by varying the thiuram disulfide concentration, pH of the system, and thiuram structures. Since the consecutive transient behaviors are precisely predictable, we envision the strategy's potential in guiding the molecular designs of autonomous and adaptive materials for many fields.

15.
Front Robot AI ; 9: 849516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280962

RESUMEN

Liquid crystal elastomers (LCEs) are a rubbery network of polymers with ordered liquid crystal mesogens. The combination of rubber elasticity and the anisotropic liquid crystalline order gives exceptional mechanical properties, like soft elasticity, where near-constant stress accompanies large elastic deformation in the material. However, the soft elasticity in LCEs is often bounded by the intrinsic molecular interactions and structures, limiting the range of programmable mechanical properties and functionalities. Here, we demonstrate that the semi-soft elasticity of LCEs can be integrated into the framework of metamaterials to realize markedly programmabilities. Under uniaxial deformation, each state of the building blocks in metamaterials and the molecular composition of the nematic LCEs is associated with a distinctly different stress-strain relation that is fully elastic. Taking advantage of the tunable bending and stretching deformation enabled by the geometry of the building blocks and the semi-soft elasticity of the nematic LCE in the metamaterials, we can engineer the local stretch and stress at an unmet level of their counterpart composed by elastomers. Numerical simulations and analytical models are developed to relate the metamaterial geometries and the LCE soft elasticity to the mechanical responses. In addition, an elastic region with near-zero stiffness up to a stretch of 1.4 can be designed by connecting the compliant responses due to bending deformation and the soft elasticity in the LCE. We expect that the specialized mechanical tunability enabled by the LCE metamaterials can facilitate the development of advanced forms of mechanical metamaterials and impact the design of robotic systems.

16.
Adv Mater ; 33(46): e2005890, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33938063

RESUMEN

For thousands of years, carbon ink has been used as a black color pigment for writing and painting purposes. However, recent discoveries of nanocarbon materials, including fullerenes, carbon nanotubes, graphene, and their various derivative forms, together with the advances in large-scale synthesis, are enabling a whole new generation of carbon inks that can serve as an intrinsically programmable materials platform for developing advanced functionalities far beyond color. The marriage between these multifunctional nanocarbon inks with modern printing technologies is facilitating and even transforming many applications, including flexible electronics, wearable and implantable sensors, actuators, and autonomous robotics. This review examines recent progress in the reborn field of carbon inks, highlighting their programmability and multifunctionality for applications in flexible electronics and stimuli-responsive devices. Current challenges and opportunities will also be discussed from a materials science perspective towards the advancement of carbon ink for new applications beyond color.

17.
Adv Mater ; 33(46): e2004655, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34028885

RESUMEN

A wide portfolio of advanced programmable materials and structures has been developed for biological applications in the last two decades. Particularly, due to their unique properties, semiconducting materials have been utilized in areas of biocomputing, implantable electronics, and healthcare. As a new concept of such programmable material design, biointerfaces based on inorganic semiconducting materials as substrates introduce unconventional paths for bioinformatics and biosensing. In particular, understanding how the properties of a substrate can alter microbial biofilm behavior enables researchers to better characterize and thus create programmable biointerfaces with necessary characteristics on demand. Herein, the current status of advanced microorganism-inorganic biointerfaces is summarized along with types of responses that can be observed in such hybrid systems. This work identifies promising inorganic material types along with target microorganisms that will be critical for future research on programmable biointerfacial structures.


Asunto(s)
Materiales Biomiméticos/química , Semiconductores , Biopelículas/efectos de los fármacos , Materiales Biomiméticos/farmacología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Nanoestructuras/química , Nanoestructuras/toxicidad , Polímeros/química , Óxido de Zinc/química , Óxido de Zinc/farmacología
18.
Adv Mater ; 33(21): e2008558, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33860582

RESUMEN

Soft actuators have the potential of revolutionizing the field of robotics. However, it has been a long-standing challenge to achieve simultaneously: i) miniaturization of soft actuators, ii) high contrast between materials properties at their "on" and "off" states, iii) significant actuation for high-payload mechanical work, and iv) ability to perform diverse shape transformations. This challenge is addressed by synergistically utilizing structural concepts found in the dermis of sea cucumbers and the tendrils of climbing plants, together with microfluidic fabrication to create diatomite-laden hygroscopically responsive fibers with a discontinuous ribbon of stiff, asymmetrically shaped, and hygroscopically inactive microparticles embedded inside. The microactuators can undergo various deformations and have very high property contrast ratios (20-850 for various mechanical characteristics of interest) between hydrated and dehydrated states. The resulting energy density, actuation strain, and actuation stress are shown to exceed those of natural muscle by ≈4, >2, and >30 times, respectively, and their weight-lifting ratio is 2-3 orders of magnitude higher than the value of recent hygroscopic actuators. This work offers a new and general way to design and fabricate next-generation soft microactuators, and thus advances the field of soft robotics by tailoring the structure and properties of deformable elements to suit a desired application.

19.
Adv Mater ; 33(37): e2008617, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34338367

RESUMEN

Shape morphing implicates that a specific condition leads to a morphing reaction. The material thus transforms from one shape to another in a predefined manner. In this paper, not only the target shape but rather the evolution of the material's shape as a function of the applied strain is programmed. To rationalize the design process, concepts from informatics (processing functions, for example, Poisson's ratio (PR) as function of strain: ν = f(ε) and if-then-else conditions) will be introduced. Three types of shape morphing behavior will be presented: (1) achieving a target shape by linearly increasing the amplitude of the shape, (2) filling up a target shape in linear steps, and (3) shifting a bulge through the material to a target position. In the first case, the shape is controlled by a geometric gradient within the material. The filling kind of behavior was implemented by logical operations. Moreover, programming moving hillocks (3) requires to implement a sinusoidal function εy  = sin (εx ) and an if-then-else statement into the unit cells combined with a global stiffness gradient. The three cases will be used to show how the combination of mechanical mechanisms as well as the related parameter distribution enable a programmable shape morphing behavior in an inverse design process.

20.
Adv Mater ; 33(24): e2008119, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33960032

RESUMEN

Switchable optical properties are essential for numerous technologies including communication, anticounterfeiting, camouflage, and imaging/sensing. Typically, the switching is enabled by applying external stimulation such as UV light for fluorescence detection. In contrast, ground squirrels utilize spontaneous live infrared emission for fencing off predators as a unique way of communication. Inspired by this, live evolution of both optical and thermal images for temporal communication in which time is the encoded information is demonstrated. This system is based on a digitally light-cured polymeric phase-change material for which the crystallization kinetics can be controlled in a pixelated manner. Consequently, live evolution in optical transparency during the crystallization process enables temporal optical communication. Additionally, by harnessing the dynamic evolution of the thermal enthalpy, multiple sets of time-specific information can be reversibly retrieved as self-evolving infrared thermal images. The versatility of this dual-mode temporal system expands the scope for secured communication, with potential implications for various other areas including optics, thermal regulation, and 3D/4D printing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA