Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340340

RESUMEN

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Acetilación , Animales , Glucemia/metabolismo , Células Cultivadas , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Resistencia a la Insulina , Ratones , Factores de Transcripción p300-CBP/metabolismo
2.
Mol Cell ; 82(22): 4246-4261.e11, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36400009

RESUMEN

Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Acetilcoenzima A/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Histonas/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Genes Dev ; 33(17-18): 1280-1292, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371438

RESUMEN

All cells use proteases to adjust protein amounts. Proteases maintain protein homeostasis by degrading nonfunctional toxic proteins and play regulatory roles by targeting particular substrates in response to specific signals. Here we address how cells tune protease specificity to nutritional signals. We report that Salmonella enterica increases the specificity of the broadly conserved proteases Lon and ClpSAP by transforming the Lon activator and substrate HspQ into an inhibitor of the N-degron recognin ClpS, the adaptor of the ClpAP protease. We establish that upon acetylation, HspQ stops being a Lon activator and substrate and that the accumulated HspQ binds to ClpS, hindering degradation of ClpSAP substrates. Growth on glucose promotes HspQ acetylation by increasing acetyl-CoA amounts, thereby linking metabolism to proteolysis. By altering protease specificities but continuing to degrade junk proteins, cells modify the abundance of particular proteins while preserving the quality of their proteomes. This rapid response mechanism linking protease specificity to nutritional signals is broadly conserved.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fenómenos Fisiológicos de la Nutrición , Salmonella enterica/enzimología , Acetilación , Activadores de Enzimas/metabolismo , Inhibidores Enzimáticos/metabolismo , Glucosa/metabolismo , Proteínas de Choque Térmico , Proteasa La/metabolismo , Unión Proteica , Proteolisis , Salmonella enterica/crecimiento & desarrollo , Especificidad por Sustrato
4.
J Biol Chem ; 300(2): 105617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176653

RESUMEN

Liver can sense the nutrient status and send signals to other organs to regulate overall metabolic homoeostasis. Herein, we demonstrate that ketone bodies act as signals released from the liver that specifically determine the distribution of excess lipid in epididymal white adipose tissue (eWAT) when exposed to a ketogenic diet (KD). An acute KD can immediately result in excess lipid deposition in the liver. Subsequently, the liver sends the ketone body ß-hydroxybutyrate (BHB) to regulate white adipose expansion, including adipogenesis and lipogenesis, to alleviate hepatic lipid accumulation. When ketone bodies are depleted by deleting 3-hydroxy-3-methylglutaryl-CoA synthase 2 gene in the liver, the enhanced lipid deposition in eWAT but not in inguinal white adipose tissue is preferentially blocked, while lipid accumulation in liver is not alleviated. Mechanistically, ketone body BHB can significantly decrease lysine acetylation of peroxisome proliferator-activated receptor gamma in eWAT, causing enhanced activity of peroxisome proliferator-activated receptor gamma, the key adipogenic transcription factor. These observations suggest that the liver senses metabolic stress first and sends a corresponding signal, that is, ketone body BHB, to specifically promote eWAT expansion to adapt to metabolic challenges.


Asunto(s)
Tejido Adiposo Blanco , Dieta Cetogénica , Hígado Graso , Cuerpos Cetónicos , Humanos , Tejido Adiposo Blanco/metabolismo , Hígado Graso/metabolismo , Cuerpos Cetónicos/metabolismo , Lípidos , Hígado/metabolismo , PPAR gamma/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-39069827

RESUMEN

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on Slc25a1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of Slc25a1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for four weeks, while Nile tilapia received intraperitoneal injections of dsRNA to knockdown slc25a1b for seven days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Notably, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride accumulation by deacetylating Cpt1a. Additionally, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of non-histone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.

6.
Acta Pharmacol Sin ; 45(9): 1898-1911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38760545

RESUMEN

Tacrolimus, one of the macrolide calcineurin inhibitors, is the most frequently used immunosuppressant after transplantation. Long-term administration of tacrolimus leads to dyslipidemia and affects liver lipid metabolism. In this study, we investigated the mode of action and underlying mechanisms of this adverse reaction. Mice were administered tacrolimus (2.5 mg·kg-1·d-1, i.g.) for 10 weeks, then euthanized; the blood samples and liver tissues were collected for analyses. We showed that tacrolimus administration induced significant dyslipidemia and lipid deposition in mouse liver. Dyslipidemia was also observed in heart or kidney transplantation patients treated with tacrolimus. We demonstrated that tacrolimus did not directly induce de novo synthesis of fatty acids, but markedly decreased fatty acid oxidation (FAO) in AML12 cells. Furthermore, we showed that tacrolimus dramatically decreased the expression of HMGCS2, the rate-limiting enzyme of ketogenesis, with decreased ketogenesis in AML12 cells, which was responsible for lipid deposition in normal hepatocytes. Moreover, we revealed that tacrolimus inhibited forkhead box protein O1 (FoxO1) nuclear translocation by promoting FKBP51-FoxO1 complex formation, thus reducing FoxO1 binding to the HMGCS2 promoter and its transcription ability in AML12 cells. The loss of HMGCS2 induced by tacrolimus caused decreased ketogenesis and increased acetyl-CoA accumulation, which promoted mitochondrial protein acetylation, thereby resulting in FAO function inhibition. Liver-specific HMGCS2 overexpression via tail intravenous injection of AAV8-TBG-HMGCS2 construct reversed tacrolimus-induced mitochondrial protein acetylation and FAO inhibition, thus removing the lipid deposition in hepatocytes. Collectively, this study demonstrates a novel mechanism of liver lipid deposition and hyperlipidemia induced by long-term administration of tacrolimus, resulted from the loss of HMGCS2-mediated ketogenesis and subsequent FAO inhibition, providing an alternative target for reversing tacrolimus-induced adverse reaction.


Asunto(s)
Hidroximetilglutaril-CoA Sintasa , Hígado , Ratones Endogámicos C57BL , Tacrolimus , Animales , Tacrolimus/farmacología , Ratones , Masculino , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Inmunosupresores/farmacología , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Línea Celular
7.
Int J Med Sci ; 21(4): 725-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464830

RESUMEN

Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Humanos , Axones/metabolismo , Histonas/metabolismo , Acetilación , Regeneración Nerviosa , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapéutico
8.
Plant J ; 109(1): 92-111, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713507

RESUMEN

Plants need to rapidly and flexibly adjust their metabolism to changes of their immediate environment. Since this necessity results from the sessile lifestyle of land plants, key mechanisms for orchestrating central metabolic acclimation are likely to have evolved early. Here, we explore the role of lysine acetylation as a post-translational modification to directly modulate metabolic function. We generated a lysine acetylome of the moss Physcomitrium patens and identified 638 lysine acetylation sites, mostly found in mitochondrial and plastidial proteins. A comparison with available angiosperm data pinpointed lysine acetylation as a conserved regulatory strategy in land plants. Focusing on mitochondrial central metabolism, we functionally analyzed acetylation of mitochondrial malate dehydrogenase (mMDH), which acts as a hub of plant metabolic flexibility. In P. patens mMDH1, we detected a single acetylated lysine located next to one of the four acetylation sites detected in Arabidopsis thaliana mMDH1. We assessed the kinetic behavior of recombinant A. thaliana and P. patens mMDH1 with site-specifically incorporated acetyl-lysines. Acetylation of A. thaliana mMDH1 at K169, K170, and K334 decreases its oxaloacetate reduction activity, while acetylation of P. patens mMDH1 at K172 increases this activity. We found modulation of the malate oxidation activity only in A. thaliana mMDH1, where acetylation of K334 strongly activated it. Comparative homology modeling of MDH proteins revealed that evolutionarily conserved lysines serve as hotspots of acetylation. Our combined analyses indicate lysine acetylation as a common strategy to fine-tune the activity of central metabolic enzymes with likely impact on plant acclimation capacity.


Asunto(s)
Embryophyta/enzimología , Malato Deshidrogenasa/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Embryophyta/genética , Lisina/metabolismo , Malato Deshidrogenasa/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
EMBO J ; 38(18): e100948, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31418899

RESUMEN

As a ubiquitous bacterial secondary messenger, c-di-GMP plays key regulatory roles in processes such as bacterial motility and transcription regulation. CobB is the Sir2 family protein deacetylase that controls energy metabolism, chemotaxis, and DNA supercoiling in many bacteria. Using an Escherichia coli proteome microarray, we found that c-di-GMP strongly binds to CobB. Further, protein deacetylation assays showed that c-di-GMP inhibits the activity of CobB and thereby modulates the biogenesis of acetyl-CoA. Interestingly, we also found that one of the key enzymes directly involved in c-di-GMP production, DgcZ, is a substrate of CobB. Deacetylation of DgcZ by CobB enhances its activity and thus the production of c-di-GMP. Our work establishes a novel negative feedback loop linking c-di-GMP biogenesis and CobB-mediated protein deacetylation.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Sirtuinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , GMP Cíclico/metabolismo , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos , Sistemas de Mensajero Secundario
10.
Pharmacol Res ; 197: 106950, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820854

RESUMEN

Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.


Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , Epigenómica
11.
Biochemistry (Mosc) ; 88(1): 105-118, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37068879

RESUMEN

Organism adaptation to metabolic challenges requires coupling of metabolism to gene expression. In this regard, acylations of histones and metabolic proteins acquire significant interest. We hypothesize that adaptive response to inhibition of a key metabolic process, catalyzed by the acetyl-CoA-generating pyruvate dehydrogenase (PDH) complex, is mediated by changes in the protein acylations. The hypothesis is tested by intranasal administration to animals of PDH-specific inhibitors acetyl(methyl)phosphinate (AcMeP) or acetylphosphonate methyl ester (AcPMe), followed by the assessment of physiological parameters, brain protein acylation, and expression/phosphorylation of PDHA subunit. At the same dose, AcMeP, but not AcPMe, decreases acetylation and increases succinylation of the brain proteins with apparent molecular masses of 15-20 kDa. Regarding the proteins of 30-50 kDa, a strong inhibitor AcMeP affects acetylation only, while a less efficient AcPMe mostly increases succinylation. The unchanged succinylation of the 30-50 kDa proteins after the administration of AcMeP coincides with the upregulation of desuccinylase SIRT5. No significant differences between the levels of brain PDHA expression, PDHA phosphorylation, parameters of behavior or ECG are observed in the studied animal groups. The data indicate that the short-term inhibition of brain PDH affects acetylation and/or succinylation of the brain proteins, that depends on the inhibitor potency, protein molecular mass, and acylation type. The homeostatic nature of these changes is implied by the stability of physiological parameters after the PDH inhibition.


Asunto(s)
Oxidorreductasas , Complejo Piruvato Deshidrogenasa , Ratas , Animales , Fosforilación , Acilación , Complejo Piruvato Deshidrogenasa/metabolismo , Oxidorreductasas/metabolismo , Encéfalo/metabolismo , Piruvatos
12.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1370-1379, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580952

RESUMEN

Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.


Asunto(s)
Neoplasias Hepáticas , Sirtuina 2 , Humanos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Metabolismo de los Lípidos , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Proliferación Celular , Lípidos , Acetilación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo
13.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446160

RESUMEN

Cryodamage affects the normal physiological functions and survivability of boar sperm during cryopreservation. Lysine acetylation is thought to be an important regulatory mechanism in sperm functions. However, little is known about protein acetylation and its effects on cryotolerance or cryodamage in boar sperm. In this study, the characterization and protein acetylation dynamics of boar sperm during cryopreservation were determined using liquid chromatography-mass spectrometry (LC-MS). A total of 1440 proteins were identified out of 4705 modified proteins, and 2764 quantifiable sites were elucidated. Among the differentially modified sites, 1252 were found to be upregulated compared to 172 downregulated sites in fresh and frozen sperms. Gene ontology indicated that these differentially modified proteins are involved in metabolic processes and catalytic and antioxidant activities, which are involved in pyruvate metabolism, phosphorylation and lysine degradation. In addition, the present study demonstrated that the mRNA and protein expressions of SIRT5, IDH2, MDH2 and LDHC, associated with sperm quality parameters, are downregulated after cryopreservation. In conclusion, cryopreservation induces the acetylation and deacetylation of energy metabolism-related proteins, which may contribute to the post-thawed boar sperm quality parameters.


Asunto(s)
Lisina , Preservación de Semen , Porcinos , Masculino , Animales , Acetilación , Lisina/metabolismo , Semen/metabolismo , Preservación de Semen/métodos , Espermatozoides/metabolismo , Criopreservación/métodos , Motilidad Espermática
14.
Proteomics ; 22(5-6): e2100041, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34545670

RESUMEN

Posttranslational modifications (PTMs) affect protein function/dysfunction, playing important roles in the occurrence and development of tauopathies including Alzheimer's disease. PTM detection is significant and still challenging due to the requirements of high sensitivity to identify the subtle structural differences between modifications. Herein, in terms of the unique geometry of the aerolysin (AeL) nanopore, we elaborately engineered a T232K AeL nanopore to detect the acetylation and phosphorylation of Tau segment (Pep). By replacing neutral threonine (T) with positively charged lysine (K) at the 232 sites, the T232K and K238 rings of this engineered T232K AeL nanopore corporately work together to enhance electrostatic trapping of the acetylated and phosphorylated Tau peptides. Translocation speed of the monophosphorylated Pep-P was decelerated by up to 46 folds compared to the wild-type (WT) AeL nanopore. The prolonged residences within the T232K AeL nanopore enabled to simultaneously identify the monoacetylated Pep-Ac, monophosphorylated Pep-P, di-modified Pep-P-Ac and non-modified Pep. The tremendous potential is demonstrated for PTM sensing by manipulating non-covalent interactions between nanopores and single analytes.


Asunto(s)
Nanoporos , Proteínas Citotóxicas Formadoras de Poros , Proteínas tau/química , Acetilación , Toxinas Bacterianas , Fosforilación , Proteínas Citotóxicas Formadoras de Poros/química , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional
15.
J Mol Cell Cardiol ; 165: 76-85, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34998831

RESUMEN

Over 50% of patients with heart failure have preserved ejection fraction (HFpEF), rather than reduced ejection fraction (HFrEF). The prevalence of HFpEF continues to increase, while the pathogenic mechanisms underlying HFpEF remain largely elusive and evidence-based therapies are still lacking. This study was designed to investigate the metabolic signature of HFpEF and test the potential therapeutic intervention in a mouse model. By utilizing a "3-Hit" HFpEF mouse model, we observed a global protein hyperacetylation in the HFpEF hearts as compared to the pressure overload-induced HFrEF and adult/aged non-heart failure (NHF) hearts. Acetylome analysis identified that a large proportion of the hyperacetylated proteins (74%) specific to the HFpEF hearts are in mitochondria, and enriched in tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and fatty acid oxidation. Further study showed that the elevated protein acetylation in the HFpEF hearts was correlated with reduced NAD+/NADH ratio, impaired mitochondrial function, and depleted TCA cycle metabolites. Normalization of NAD+/NADH ratio by supplementation of nicotinamide riboside (NR) for 30 days downregulated the acetylation level, improved mitochondrial function and ameliorated HFpEF phenotypes. Therefore, our study identified a distinct protein acetylation pattern in the HFpEF hearts, and proposed NR as a promising agent in lowering acetylation and mitigating HFpEF phenotypes in mice.


Asunto(s)
Insuficiencia Cardíaca , Anciano , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Mitocondriales , NAD , Volumen Sistólico , Función Ventricular Izquierda
16.
J Proteome Res ; 21(2): 482-493, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020403

RESUMEN

Acetylation represents an extensively occurring protein post-translational modification (PTM) that plays a key role in many cellular physiological and biochemical processes. However, studies on PTMs such as acetylation of lysine (LysAc) in cyanobacteria are still rare. In this study, a quantitative LysAc approach (acetylome) on the strains of Nostoc flagelliforme subjected to different dehydration treatments was conducted. We observed that starch contents were significantly accumulated due to dehydration treatments, and we identified 2474 acetylpeptides and 1060 acetylproteins based on acetylome analysis. Furthermore, an integrative analysis was performed on acetylome and nontargeted metabolism, and the results showed that many KEGG terms were overlapped for both omics analyses, including starch and sucrose metabolism, transporter activity, and carbon metabolism. In addition, time series clustering was analyzed, and some proteins related to carbon metabolism and the ROS scavenging system were significantly enriched in the list of differentially abundant acetylproteins (DAAPs). These protein expression levels were further tested by qPCR. A working model was finally proposed to show the biological roles of protein acetylation from carbon metabolism and the ROS scavenging system in response to dehydration in N. flagelliforme. We highlighted that LysAc was essential for the regulation of key metabolic enzymes in the dehydration stress response.


Asunto(s)
Carbono , Deshidratación , Acetilación , Humanos , Nostoc , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno
17.
J Biol Chem ; 297(3): 101044, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358562

RESUMEN

Protein acetylation is a reversible posttranslational modification, which is regulated by lysine acetyltransferase (KAT) and lysine deacetyltransferase (KDAC). Although protein acetylation has been shown to regulate synaptic plasticity, this was mainly for histone protein acetylation. The function and regulation of nonhistone protein acetylation in synaptic plasticity and learning remain largely unknown. Calmodulin (CaM), a ubiquitous Ca2+ sensor, plays critical roles in synaptic plasticity such as long-term potentiation (LTP). During LTP induction, activation of NMDA receptor triggers Ca2+ influx, and the Ca2+ binds with CaM and activates calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). In our previous study, we demonstrated that acetylation of CaM was important for synaptic plasticity and fear learning in mice. However, the KAT responsible for CaM acetylation is currently unknown. Here, following an HEK293 cell-based screen of candidate KATs, steroid receptor coactivator 3 (SRC3) is identified as the most active KAT for CaM. We further demonstrate that SRC3 interacts with and acetylates CaM in a Ca2+ and NMDA receptor-dependent manner. We also show that pharmacological inhibition or genetic downregulation of SRC3 impairs CaM acetylation, synaptic plasticity, and contextual fear learning in mice. Moreover, the effects of SRC3 inhibition on synaptic plasticity and fear learning could be rescued by 3KQ-CaM, a mutant form of CaM, which mimics acetylation. Together, these observations demonstrate that SRC3 acetylates CaM and regulates synaptic plasticity and learning in mice.


Asunto(s)
Encéfalo/metabolismo , Calmodulina/metabolismo , Miedo , Aprendizaje , Coactivador 3 de Receptor Nuclear/metabolismo , Acetilación , Animales , Calcio/metabolismo , Calmodulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Coactivador 3 de Receptor Nuclear/genética
18.
J Cell Physiol ; 237(1): 13-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34237149

RESUMEN

Autophagy is a highly conserved mechanism responsible for cellular homeostasis and integrity in a variety of physiological conditions. Materials targeted for degradation are directed to autophagosomes and autolysosomes, where they are broken down into their base components. Aberrant regulation of autophagy is significantly associated with various cancers and neurodegenerative diseases. Recently, accumulating evidence has revealed that the coordinated regulation of histone and non-histone protein modification is associated with autophagy. In this review, we highlight the recent progress that has been made in elucidating the molecular basis of protein methylation and acetylation associated with autophagy at the transcriptional and posttranslational levels. Furthermore, we discuss the importance of describing causality between protein methylation/acetylation and autophagy regulation as compelling therapeutic opportunities in cancer pathogenesis and progression.


Asunto(s)
Neoplasias , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia/genética , Humanos , Metilación , Neoplasias/genética , Procesamiento Proteico-Postraduccional/genética
19.
J Inherit Metab Dis ; 45(6): 1048-1058, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35999711

RESUMEN

Acetyl-CoA transporter 1 (AT-1) is a transmembrane protein which regulates influx of acetyl-CoA from the cytosol to the lumen of the endoplasmic reticulum and is therefore important for the posttranslational modification of numerous proteins. Pathological variants in the SLC33A1 gene coding for AT-1 have been linked to a disorder called Huppke-Brendel syndrome, which is characterized by congenital cataracts, hearing loss, severe developmental delay and early death. It has been described in eight patients so far, who all had the abovementioned symptoms together with low serum copper and ceruloplasmin concentrations. The link between AT-1 and low ceruloplasmin concentrations is not clear, nor is the complex pathogenesis of the disease. Here we describe a further case of Huppke-Brendel syndrome with a novel and truncating homozygous gene variant and provide novel biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma. Our results indicate that decreased levels of many N-acetylated amino acids in CSF are a typical metabolic fingerprint for AT-1 deficiency and are potential biomarkers for the defect. As acetyl-CoA is an important substrate for protein acetylation, we performed N-terminal proteomics, but found only minor effects on this particular protein modification. The acetyl-CoA content in patient's fibroblasts was insignificantly decreased. Our data may help to better understand the mechanisms underlying the metabolic disturbances, the pathophysiology and the clinical phenotype of the disease.


Asunto(s)
Aminoácidos , Ceruloplasmina , Humanos , Acetilcoenzima A/metabolismo , Ceruloplasmina/metabolismo , Aminoácidos/metabolismo , Retículo Endoplásmico/metabolismo , Acetilación , Síndrome
20.
Bioorg Med Chem ; 72: 116973, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063654

RESUMEN

Covalent binding enzyme inhibitors have grown in acceptance in therapeutic discovery. Several recent examples of protein-targeting acyl-transfer catalysts covalently modify protein targets in cellular systems but generally do not affect protein function. In this study, a small molecule has been developed for the first time that can achieve catalytic covalent inhibition of the inflammatory response enzyme, cyclooxygenase-1, in cells using only endogenous acetyl-CoA as a co-substrate. By utilizing a catalytic inhibitor which can self-regenerate, a sustained inhibitory response is achieved in cells compared to the analogous non-catalytic covalent cyclooxygenase antagonist, acetylsalicylic acid (aspirin).


Asunto(s)
Aciltransferasas , Biomimética , Acetilcoenzima A , Aciltransferasas/metabolismo , Aspirina , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA