Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 104965, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356718

RESUMEN

Janus Kinase-1 (JAK1) plays key roles during neurodevelopment and following neuronal injury, while activatory JAK1 mutations are linked to leukemia. In mice, Jak1 genetic deletion results in perinatal lethality, suggesting non-redundant roles and/or regulation of JAK1 for which other JAKs cannot compensate. Proteomic studies reveal that JAK1 is more likely palmitoylated compared to other JAKs, implicating palmitoylation as a possible JAK1-specific regulatory mechanism. However, the importance of palmitoylation for JAK1 signaling has not been addressed. Here, we report that JAK1 is palmitoylated in transfected HEK293T cells and endogenously in cultured Dorsal Root Ganglion (DRG) neurons. We further use comprehensive screening in transfected non-neuronal cells and shRNA-mediated knockdown in DRG neurons to identify the related enzymes ZDHHC3 and ZDHHC7 as dominant protein acyltransferases (PATs) for JAK1. Surprisingly, we found palmitoylation minimally affects JAK1 localization in neurons, but is critical for JAK1's kinase activity in cells and even in vitro. We propose this requirement is likely because palmitoylation facilitates transphosphorylation of key sites in JAK1's activation loop, a possibility consistent with structural models of JAK1. Importantly, we demonstrate a leukemia-associated JAK1 mutation overrides the palmitoylation-dependence of JAK1 activity, potentially explaining why this mutation is oncogenic. Finally, we show that JAK1 palmitoylation is important for neuropoietic cytokine-dependent signaling and neuronal survival and that combined Zdhhc3/7 loss phenocopies loss of palmitoyl-JAK1. These findings provide new insights into the control of JAK signaling in both physiological and pathological contexts.


Asunto(s)
Citocinas , Lipoilación , Neuronas , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Embarazo , Citocinas/metabolismo , Ganglios Espinales/metabolismo , Células HEK293 , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteómica , Supervivencia Celular
2.
J Biol Chem ; 299(1): 102754, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442513

RESUMEN

S-acylation is an essential post-translational modification, which is mediated by a family of 23 zDHHC enzymes in humans. Several thousand proteins are modified by S-acylation; however, we lack a detailed understanding of how enzyme-substrate recognition and specificity is achieved. Previous work showed that the ankyrin repeat domain of zDHHC17 (ANK17) recognizes a short linear motif, known as the zDHHC ANK binding motif (zDABM) in substrate protein SNAP25, as a mechanism of substrate recruitment prior to S-acylation. Here, we investigated the S-acylation of the Sprouty and SPRED family of proteins by zDHHC17. Interestingly, although Sprouty-2 (Spry2) contains a zDABM that interacts with ANK17, this mode of binding is dispensable for S-acylation, and indeed removal of the zDABM does not completely ablate binding to zDHHC17. Furthermore, the related SPRED3 protein interacts with and is efficiently S-acylated by zDHHC17, despite lacking a zDABM. We undertook mutational analysis of SPRED3 to better understand the basis of its zDABM-independent interaction with zDHHC17. This analysis found that the cysteine-rich SPR domain of SPRED3, which is the defining feature of all Sprouty and SPRED proteins, interacts with zDHHC17. Surprisingly, the interaction with SPRED3 was independent of ANK17. Our mutational analysis of Spry2 was consistent with the SPR domain of this protein containing a zDHHC17-binding site, and Spry2 also showed detectable binding to a zDHHC17 mutant lacking the ANK domain. Thus, zDHHC17 can recognize its substrates through zDABM-dependent and/or zDABM-independent mechanisms, and some substrates display more than one mode of binding to this enzyme.


Asunto(s)
Aciltransferasas , Proteínas de la Membrana , Animales , Humanos , Ratones , Ratas , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Repetición de Anquirina , Sitios de Unión , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
3.
Cancer Sci ; 115(4): 1170-1183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287874

RESUMEN

Platinum-based therapies have revolutionized the treatment of high-grade serous ovarian cancer (HGSOC). However, high rates of disease recurrence and progression remain a major clinical concern. Impaired mitochondrial function and dysregulated reactive oxygen species (ROS), hallmarks of cancer, hold potential as therapeutic targets for selectively sensitizing cisplatin treatment. Here, we uncover an oncogenic role of the palmitoyltransferase ZDHHC12 in regulating mitochondrial function and ROS homeostasis in HGSOC cells. Analysis of The Cancer Genome Atlas (TCGA) ovarian cancer data revealed significantly elevated ZDHHC12 expression, demonstrating the strongest positive association with ROS pathways among all ZDHHC enzymes. Transcriptomic analysis of independent ovarian cancer datasets and the SNU119 cell model corroborated this association, highlighting a strong link between ZDHHC12 expression and signature pathways involving mitochondrial oxidative metabolism and ROS regulation. Knockdown of ZDHHC12 disrupted this association, leading to increased cellular complexity, ATP levels, mitochondrial activity, and both mitochondrial and cellular ROS. This dysregulation, achieved by the siRNA knockdown of ZDHHC12 or treatment with the general palmitoylation inhibitor 2BP or the fatty acid synthase inhibitor C75, significantly enhanced cisplatin cytotoxicity in 2D and 3D spheroid models of HGSOC through ROS-mediated mechanisms. Markedly, ZDHHC12 inhibition significantly augmented the anti-tumor activity of cisplatin in an ovarian cancer xenograft tumor model, as well as in an ascites-derived organoid line of platinum-resistant ovarian cancer. Our data suggest the potential of ZDHHC12 as a promising target to improve the outcome of HGSOCs in response to platinum-based chemotherapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral
4.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753498

RESUMEN

The homeostasis of protein palmitoylation and depalmitoylation is essential for proper physiological functions in various tissues, in particular the central nervous system (CNS). The dysfunction of PPT1 (PPT1-KI, infantile neuronal ceroid lipofuscinosis [INCL] mouse model), which catalyze the depalmitoylation process, results in serious neurodegeneration accompanied by severe astrogliosis in the brain. Endeavoring to determine critical factors that might account for the pathogenesis in CNS by palm-proteomics, glial fibrillary acidic protein (GFAP) was spotted, indicating that GFAP is probably palmitoylated. Questions concerning if GFAP is indeed palmitoylated in vivo and how palmitoylation of GFAP might participate in neural pathology remain unexplored and are waiting to be investigated. Here we show that GFAP is readily palmitoylated in vitro and in vivo; specifically, cysteine-291 is the unique palmitoylated residue in GFAP. Interestingly, it was found that palmitoylated GFAP promotes astrocyte proliferation in vitro. Furthermore, we showed that PPT1 depalmitoylates GFAP, and the level of palmitoylated GFAP is overwhelmingly up-regulated in PPT1-knockin mice, which lead us to speculate that the elevated level of palmitoylated GFAP might accelerate astrocyte proliferation in vivo and ultimately led to astrogliosis in INCL. Indeed, blocking palmitoylation by mutating cysteine-291 into alanine in GFAP attenuate astrogliosis, and remarkably, the concurrent neurodegenerative pathology in PPT1-knockin mice. Together, these findings demonstrate that hyperpalmitoylated GFAP plays critical roles in regulating the pathogenesis of astrogliosis and neurodegeneration in the CNS, and most importantly, pinpointing that cysteine-291 in GFAP might be a valuable pharmaceutical target for treating INCL and other potential neurodegenerative diseases.


Asunto(s)
Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Tioléster Hidrolasas/genética , Animales , Astrocitos/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Proteína Ácida Fibrilar de la Glía/genética , Gliosis/genética , Humanos , Lipoilación , Ratones , Ratones Endogámicos C57BL , Lipofuscinosis Ceroideas Neuronales/genética
5.
J Biol Chem ; 298(10): 102469, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087837

RESUMEN

Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain-containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving "autoacylation" of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.


Asunto(s)
Aciltransferasas , Cisteína , Descubrimiento de Drogas , Humanos , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Cisteína/metabolismo , Lipoilación , Dedos de Zinc
6.
J Biol Chem ; 297(4): 101112, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428449

RESUMEN

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Asunto(s)
COVID-19/patología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , COVID-19/virología , Cisteína/metabolismo , Células HEK293 , Humanos , Lipoilación , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
7.
Cell Mol Life Sci ; 78(5): 2341-2353, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32986127

RESUMEN

Ablation of protein acyltransferase DHHC3 selectively enhanced the anti-cancer cell activities of several chemotherapeutic agents, but not kinase inhibitors. To understand why this occurs, we used comparative mass spectrometry-based palmitoyl-proteomic analysis of breast and prostate cancer cell lines, ± DHHC3 ablation, to obtain the first comprehensive lists of candidate protein substrates palmitoylated by DHHC3. Putative substrates included 22-28 antioxidant/redox-regulatory proteins, thus predicting that DHHC3 should have antioxidant functions. Consistent with this, DHHC3 ablation elevated oxidative stress. Furthermore, DHHC3 ablation, together with chemotherapeutic drug treatment, (a) elevated oxidative stress, with a greater than additive effect, and (b) enhanced the anti-growth effects of the chemotherapeutic agents. These results suggest that DHHC3 ablation enhances chemotherapeutic drug potency by disabling the antioxidant protections that contribute to drug resistance. Affirming this concept, DHHC3 ablation synergized with another anti-cancer drug, PARP inhibitor PJ-34, to decrease cell proliferation and increase oxidative stress. Hence, DHHC3 targeting can be a useful strategy for selectively enhancing potency of oxidative stress-inducing anti-cancer drugs. Also, comprehensive identification of DHHC3 substrates provides insight into other DHHC3 functions, relevant to in vivo tumor growth modulation.


Asunto(s)
Aciltransferasas/metabolismo , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Aciltransferasas/genética , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Camptotecina/farmacología , Línea Celular Tumoral , Femenino , Gefitinib/farmacología , Humanos , Lapatinib/farmacología , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Interferencia de ARN
8.
J Biol Chem ; 295(46): 15427-15437, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32958558

RESUMEN

Palmitoylation, the modification of proteins with the lipid palmitate, is a key regulator of protein targeting and trafficking. However, knowledge of the roles of specific palmitoyl acyltransferases (PATs), which catalyze palmitoylation, is incomplete. For example, little is known about which PATs are present in neuronal axons, although long-distance trafficking of palmitoyl-proteins is important for axon integrity and for axon-to-soma retrograde signaling, a process critical for axon development and for responses to injury. Identifying axonally targeted PATs might thus provide insights into multiple aspects of axonal biology. We therefore comprehensively determined the subcellular distribution of mammalian PATs in dorsal root ganglion (DRG) neurons and, strikingly, found that only two PATs, ZDHHC5 and ZDHHC8, were enriched in DRG axons. Signals via the Gp130/JAK/STAT3 and DLK/JNK pathways are important for axonal injury responses, and we found that ZDHHC5 and ZDHHC8 were required for Gp130/JAK/STAT3, but not DLK/JNK, axon-to-soma signaling. ZDHHC5 and ZDHHC8 robustly palmitoylated Gp130 in cotransfected nonneuronal cells, supporting the possibility that Gp130 is a direct ZDHHC5/8 substrate. In DRG neurons, Zdhhc5/8 shRNA knockdown reduced Gp130 palmitoylation and even more markedly reduced Gp130 surface expression, potentially explaining the importance of these PATs for Gp130-dependent signaling. Together, these findings provide new insights into the subcellular distribution and roles of specific PATs and reveal a novel mechanism by which palmitoylation controls axonal retrograde signaling.


Asunto(s)
Aciltransferasas/metabolismo , Axones/metabolismo , Transducción de Señal , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/genética , Animales , Células Cultivadas , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Expresión Génica , Células HEK293 , Humanos , Quinasas Janus/metabolismo , Lipoilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo
9.
J Biol Chem ; 295(18): 6151-6164, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32161114

RESUMEN

S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.


Asunto(s)
Lipoilación , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/citología , Secuencia de Aminoácidos , Fenómenos Electrofisiológicos , Ganglios Espinales/citología , Células HEK293 , Humanos , Cinética , Canal de Sodio Activado por Voltaje NAV1.6/química
10.
J Biol Chem ; 295(43): 14640-14652, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32817054

RESUMEN

The human zDHHC S-acyltransferase family comprises 23 enzymes that mediate the S-acylation of a multitude of cellular proteins, including channels, receptors, transporters, signaling molecules, scaffolds, and chaperones. This reversible post-transitional modification (PTM) involves the attachment of a fatty acyl chain, usually derived from palmitoyl-CoA, to specific cysteine residues on target proteins, which affects their stability, localization, and function. These outcomes are essential to control many processes, including synaptic transmission and plasticity, cell growth and differentiation, and infectivity of viruses and other pathogens. Given the physiological importance of S-acylation, it is unsurprising that perturbations in this process, including mutations in ZDHHC genes, have been linked to different neurological pathologies and cancers, and there is growing interest in zDHHC enzymes as novel drug targets. Although zDHHC enzymes control a diverse array of cellular processes and are associated with major disorders, our understanding of these enzymes is surprisingly incomplete, particularly with regard to the regulatory mechanisms controlling these enzymes. However, there is growing evidence highlighting the role of different PTMs in this process. In this review, we discuss how PTMs, including phosphorylation, S-acylation, and ubiquitination, affect the stability, localization, and function of zDHHC enzymes and speculate on possible effects of PTMs that have emerged from larger screening studies. Developing a better understanding of the regulatory effects of PTMs on zDHHC enzymes will provide new insight into the intracellular dynamics of S-acylation and may also highlight novel approaches to modulate S-acylation for clinical gain.


Asunto(s)
Aciltransferasas/metabolismo , Acilación , Aciltransferasas/análisis , Animales , Humanos , Lipoilación , Metilación , Fosforilación , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Ubiquitinación
11.
J Biol Chem ; 295(21): 7501-7515, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32317281

RESUMEN

S-Acylation of the SNARE protein SNAP25 (synaptosome-associated protein of 25 kDa) is mediated by a subset of Golgi zinc finger DHHC-type palmitoyltransferase (zDHHC) enzymes, particularly zDHHC17. The ankyrin repeat domain of zDHHC17 interacts with a short linear motif known as the zDHHC ankyrin repeat-binding motif (zDABM) in SNAP25 (112VVASQP117), which is downstream of its S-acylated, cysteine-rich domain (85CGLCVCPC92). Here, we investigated the importance of a flexible linker region (amino acids 93-111, referred to hereafter as the "mini-linker" region) that separates the zDABM and S-acylated cysteines in SNAP25. Shortening the mini-linker did not affect the SNAP25-zDHHC17 interaction but blocked S-acylation. Insertion of additional flexible glycine-serine repeats had no effect on S-acylation, but extended and rigid alanine-proline repeats perturbed it. A SNAP25 mutant in which the mini-linker region was substituted with a flexible glycine-serine linker of the same length underwent efficient S-acylation. Furthermore, this mutant displayed the same intracellular localization as WT SNAP25, indicating that the amino acid composition of the mini-linker is not important for SNAP25 localization. Using the results of previous peptide array experiments, we generated a SNAP25 mutant predicted to have a higher-affinity zDABM. This mutant interacted with zDHHC17 more strongly but was S-acylated with reduced efficiency in HEK293T cells, implying that a lower-affinity interaction of the SNAP25 zDABM with zDHHC17 is optimal for S-acylation efficiency. These results show that amino acids 93-111 in SNAP25 act as a flexible molecular spacer that ensures efficient coupling of the SNAP25-zDHHC17 interaction and S-acylation of SNAP25.


Asunto(s)
Proteína 25 Asociada a Sinaptosomas/metabolismo , Acilación , Secuencias de Aminoácidos , Animales , Células HEK293 , Humanos , Células PC12 , Dominios Proteicos , Ratas , Proteína 25 Asociada a Sinaptosomas/genética
12.
J Biol Chem ; 295(30): 10380-10393, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32503841

RESUMEN

Voltage-gated sodium channel (VGSC) ß1 subunits are multifunctional proteins that modulate the biophysical properties and cell-surface localization of VGSC α subunits and participate in cell-cell and cell-matrix adhesion, all with important implications for intracellular signal transduction, cell migration, and differentiation. Human loss-of-function variants in SCN1B, the gene encoding the VGSC ß1 subunits, are linked to severe diseases with high risk for sudden death, including epileptic encephalopathy and cardiac arrhythmia. We showed previously that ß1 subunits are post-translationally modified by tyrosine phosphorylation. We also showed that ß1 subunits undergo regulated intramembrane proteolysis via the activity of ß-secretase 1 and γ-secretase, resulting in the generation of a soluble intracellular domain, ß1-ICD, which modulates transcription. Here, we report that ß1 subunits are phosphorylated by FYN kinase. Moreover, we show that ß1 subunits are S-palmitoylated. Substitution of a single residue in ß1, Cys-162, to alanine prevented palmitoylation, reduced the level of ß1 polypeptides at the plasma membrane, and reduced the extent of ß1-regulated intramembrane proteolysis, suggesting that the plasma membrane is the site of ß1 proteolytic processing. Treatment with the clathrin-mediated endocytosis inhibitor, Dyngo-4a, re-stored the plasma membrane association of ß1-p.C162A to WT levels. Despite these observations, palmitoylation-null ß1-p.C162A modulated sodium current and sorted to detergent-resistant membrane fractions normally. This is the first demonstration of S-palmitoylation of a VGSC ß subunit, establishing precedence for this post-translational modification as a regulatory mechanism in this protein family.


Asunto(s)
Membrana Celular/metabolismo , Lipoilación , Procesamiento Proteico-Postraduccional , Proteolisis , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Sustitución de Aminoácidos , Animales , Membrana Celular/genética , Células HEK293 , Humanos , Hidrazonas/farmacología , Ratones , Mutación Missense , Naftoles/farmacología , Fosforilación , Proto-Oncogenes Mas , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
13.
Glycobiology ; 31(3): 231-242, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32845322

RESUMEN

CD33-related Siglecs are often found on innate immune cells and modulate their reactivity by recognition of sialic acid-based "self-associated molecular patterns" and signaling via intracellular tyrosine-based cytosolic motifs. Previous studies have shown that Siglec-11 specifically binds to the brain-enriched polysialic acid (polySia/PSA) and that its microglial expression in the brain is unique to humans. Furthermore, human microglial Siglec-11 exists as an alternate splice form missing the exon encoding the last (fifth) Ig-like C2-set domain of the extracellular portion of the protein, but little is known about the functional consequences of this variation. Here, we report that the recombinant soluble human microglial form of Siglec-11 (hSiglec-11(4D)-Fc) binds endogenous and immobilized polySia better than the tissue macrophage form (hSiglec-11(5D)-Fc) or the chimpanzee form (cSiglec-11(5D)-Fc). The Siglec-11 protein is also prone to aggregation, potentially influencing its ligand-binding ability. Additionally, Siglec-11 protein can be secreted in both intact and proteolytically cleaved forms. The microglial splice variant has reduced proteolytic release and enhanced incorporation into exosomes, a process that appears to be regulated by palmitoylation of cysteines in the cytosolic tail. Taken together, these data demonstrate that human brain specific microglial hSiglec-11(4D) has different molecular properties and can be released on exosomes and/or as proteolytic products, with the potential to affect polySia-mediated brain functions at a distance.


Asunto(s)
Encéfalo/efectos de los fármacos , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Ácidos Siálicos/farmacología , Encéfalo/metabolismo , Humanos , Lectinas/genética , Proteínas de la Membrana/genética , Isoformas de Proteínas , Ácidos Siálicos/química
14.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769186

RESUMEN

Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.


Asunto(s)
Bovinos/metabolismo , Folículo Ovárico/metabolismo , Proteínas/metabolismo , Animales , Células Cultivadas , Células del Cúmulo/química , Células del Cúmulo/metabolismo , Femenino , Células de la Granulosa/química , Células de la Granulosa/metabolismo , Lipoilación , Oocitos/química , Oocitos/metabolismo , Folículo Ovárico/química , Proteínas/análisis , Proteómica
15.
J Biol Chem ; 294(32): 12066-12076, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31213527

RESUMEN

The properties and physiological function of pore-forming α-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are potently modified by their functional coupling with regulatory subunits in many tissues. However, mechanisms that might control functional coupling are very poorly understood. Here we show that S-acylation, a dynamic post-translational lipid modification of proteins, of the intracellular S0-S1 loop of the BK channel pore-forming α-subunit controls functional coupling to regulatory ß1-subunits. In HEK293 cells, α-subunits that cannot be S-acylated show attenuated cell surface expression, but expression was restored by co-expression with the ß1-subunit. However, we also found that nonacylation of the S0-S1 loop reduces functional coupling between α- and ß1-subunits by attenuating the ß1-subunit-induced left shift in the voltage for half-maximal activation. In mouse vascular smooth muscle cells expressing both α- and ß1-subunits, BK channel α-subunits were endogenously S-acylated. We further noted that S-acylation is significantly reduced in mice with a genetic deletion of the palmitoyl acyltransferase (Zdhhc23) that controls S-acylation of the S0-S1 loop. Genetic deletion of Zdhhc23 or broad-spectrum pharmacological inhibition of S-acylation attenuated endogenous BK channel currents independently of changes in cell surface expression of the α-subunit. We conclude that functional effects of S-acylation on BK channels depend on the presence of ß1-subunits. In the absence of ß1-subunits, S-acylation promotes cell surface expression, whereas in its presence, S-acylation controls functional coupling. S-Acylation thus provides a mechanism that dynamically regulates the functional coupling with ß1-subunits, enabling an additional level of conditional, cell-specific control of ion-channel physiology.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Acilación , Animales , Células Cultivadas , Células HEK293 , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Técnicas de Placa-Clamp , Azufre/metabolismo
16.
J Biol Chem ; 294(26): 10182-10193, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31092599

RESUMEN

The epithelial sodium channel (ENaC) mediates Na+ transport in several epithelia, including the aldosterone-sensitive distal nephron, distal colon, and biliary epithelium. Numerous factors regulate ENaC activity, including extracellular ligands, post-translational modifications, and membrane-resident lipids. However, ENaC regulation by bile acids and conjugated bilirubin, metabolites that are abundant in the biliary tree and intestinal tract and are sometimes elevated in the urine of individuals with advanced liver disease, remains poorly understood. Here, using a Xenopus oocyte-based system to express and functionally study ENaC, we found that, depending on the bile acid used, bile acids both activate and inhibit mouse ENaC. Whether bile acids were activating or inhibiting was contingent on the position and orientation of specific bile acid moieties. For example, a hydroxyl group at the 12-position and facing the hydrophilic side (12α-OH) was activating. Taurine-conjugated bile acids, which have reduced membrane permeability, affected ENaC activity more strongly than did their more membrane-permeant unconjugated counterparts, suggesting that bile acids regulate ENaC extracellularly. Bile acid-dependent activation was enhanced by amino acid substitutions in ENaC that depress open probability and was precluded by proteolytic cleavage that increases open probability, consistent with an effect of bile acids on ENaC open probability. Bile acids also regulated ENaC in a cortical collecting duct cell line, mirroring the results in Xenopus oocytes. We also show that bilirubin conjugates activate ENaC. These results indicate that ENaC responds to compounds abundant in bile and that their ability to regulate this channel depends on the presence of specific functional groups.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Bilirrubina/farmacología , Ácido Desoxicólico/farmacología , Canales Epiteliales de Sodio/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Sodio/metabolismo , Animales , Antioxidantes/farmacología , Colagogos y Coleréticos/farmacología , Canales Epiteliales de Sodio/genética , Fármacos Gastrointestinales/farmacología , Humanos , Transporte Iónico , Lipoilación , Ratones , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Proteolisis , Xenopus laevis
17.
J Biol Chem ; 294(7): 2569-2578, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541923

RESUMEN

With few reported exceptions, G protein-coupled receptors (GPCRs) are modified by Cys palmitoylation (S-palmitoylation). In multiple GPCRs, S-palmitoylation targets a canonical site within the C-terminal cytoplasmic tail adjacent to the C terminus of the seventh transmembrane domain, but modification of additional sites is exemplified by the ß-adrenergic receptors (ßARs). The ß1AR is S-palmitoylated at a second, more distal site within the C-terminal tail, and the ß2AR is modified at a second site within the third intracellular loop, neither of which is conserved in other ßAR isoforms. The functional roles of S-palmitoylation of disparate sites are incompletely characterized for any GPCR family. Here, we describe S-palmitoylation of the ß3AR. We compared mouse and human ß3ARs and found that both were S-palmitoylated at the canonical site within the C-terminal tail, Cys-358 and Cys-361/363 in mouse and human ß3ARs, respectively. Surprisingly, the human ß3AR was S-palmitoylated at two additional sites, Cys-153 and Cys-292 within the second and third intracellular loops, respectively. Cys-153 is apparently unique to the human ß3AR, and Cys-292 is conserved primarily in primates. Mutational substitution of C-tail Cys in human but not mouse ß3ARs resulted in diminished ligand-induced cAMP production. Substitution of Cys-153, Cys-292, or Cys-361/363 within the human ß3AR diminished membrane-receptor abundance, but only Cys-361/363 substitution diminished membrane-receptor half-life. Thus, S-palmitoylation of different sites differentially regulates the human ß3AR, and differential S-palmitoylation distinguishes human and rodent ß3ARs, potentially contributing to species-specific differences in the clinical efficacy of ß3AR-directed pharmacological approaches to disease.


Asunto(s)
Lipoilación , Receptores Adrenérgicos beta 3/metabolismo , Sustitución de Aminoácidos , Animales , Células HEK293 , Humanos , Ratones , Mutación Missense , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta 3/genética , Especificidad de la Especie
18.
Mol Biol Rep ; 47(8): 6471-6478, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32789573

RESUMEN

S-acylation reversible-post-translational lipidation of cysteine residues-is emerging as an important regulatory mechanism in T cell signaling. Dynamic S-acylation is critical for protein recruitment into the T cell receptor complex and initiation of the subsequent signaling cascade. However, the enzymatic control of protein S-acylation in T cells remains poorly understood. Here, we report a previously uncharacterized role of DHHC21, a member of the mammalian family of DHHC protein acyltransferases, in regulation of the T cell receptor pathway. We found that loss of DHHC21 prevented S-acylation of key T cell signaling proteins, resulting in disruption of the early signaling events and suppressed expression of T cell activation markers. Furthermore, downregulation of DHHC21 prevented activation and differentiation of naïve T cells into effector subtypes. Together, our study provides the first direct evidence that DHHC protein acyltransferases can play an essential role in regulation of T cell-mediated immunity.


Asunto(s)
Aciltransferasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Acilación , Animales , Células Cultivadas , Ratones Endogámicos C57BL
19.
J Biol Chem ; 293(41): 15901-15911, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30158247

RESUMEN

Palmitoylation is a reversible post-translational addition of a 16-carbon lipid chain involved in trafficking and compartmentalizing target proteins. It is important for many cellular functions, including signaling via membrane-localized estrogen receptors (ERs). Within the nervous system, palmitoylation of ERα is necessary for membrane surface localization and mediation of downstream signaling through the activation of metabotropic glutamate receptors (mGluRs). Substitution of the single palmitoylation site on ERα prevents its physical association with the integral membrane protein caveolin-1 (CAV1), required for the formation of the ER/mGluR signaling complex. Interestingly, siRNA knockdown of either of two palmitoyl acyltransferases, zinc finger DHHC type-containing 7 (DHHC7) or DHHC21, also eliminates this signaling mechanism. Because ERα has only one palmitoylation site, we hypothesized that one of these DHHCs palmitoylates CAV1. We investigated this possibility by using an acyl-biotin exchange assay in HEK293 cells in conjunction with DHHC overexpression and found that DHHC7 increases CAV1 palmitoylation. Substitution of the palmitoylation sites on CAV1 eliminated this effect but did not disrupt the ability of the DHHC enzyme to associate with CAV1. In contrast, siRNA-mediated knockdown of DHHC7 alone was not sufficient to decrease CAV1 palmitoylation but rather required simultaneous knockdown of DHHC21. These findings provide additional information about the overall influence of palmitoylation on the membrane-initiated estrogen signaling pathway and highlight the importance of considering the influence of palmitoylation on other CAV1-dependent processes.


Asunto(s)
Aciltransferasas/metabolismo , Caveolina 1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Acetiltransferasas , Aciltransferasas/genética , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lipoilación , Procesamiento Proteico-Postraduccional , Ratas Sprague-Dawley
20.
J Biol Chem ; 292(25): 10723-10734, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28476891

RESUMEN

Transglutaminases (TGs) play essential intracellular and extracellular roles by covalently cross-linking many proteins. Drosophila TG is encoded by one gene and has two alternative splicing-derived isoforms, TG-A and TG-B, which contain distinct N-terminal 46- and 38-amino acid sequences, respectively. The TGs identified to date do not have a typical endoplasmic reticulum (ER)-signal peptide, and the molecular mechanisms of their secretion under physiologic conditions are unclear. Immunocytochemistry revealed that TG-A localizes to multivesicular-like structures, whereas TG-B localizes to the cytosol. We also found that TG-A, but not TG-B, was modified concomitantly by N-myristoylation and S-palmitoylation, and N-myristoylation was a pre-requisite for S-palmitoylation. Moreover, TG-A, but not TG-B, was secreted in response to calcium signaling induced by Ca2+ ionophores and uracil, a pathogenic bacteria-derived substance. Brefeldin A and monensin, inhibitors of the ER/Golgi-mediated conventional pathway, did not suppress TG-A secretion, whereas inhibition of S-palmitoylation by 2-bromopalmitate blocked TG-A secretion. Ultracentrifugation, electron microscopy analyses, and treatments with inhibitors of multivesicular body formation revealed that TG-A was secreted via exosomes together with co-transfected mammalian CD63, an exosomal marker, and the secreted TG-A was taken up by other cells. The 8-residue N-terminal fragment of TG-A containing the fatty acylation sites was both necessary and sufficient for the exosome-dependent secretion of TG-A. In conclusion, TG-A is secreted through an unconventional ER/Golgi-independent pathway involving two types of fatty acylations and exosomes.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas de Drosophila/metabolismo , Exosomas/metabolismo , Aparato de Golgi/metabolismo , Lipoilación/fisiología , Transglutaminasas/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Exosomas/genética , Aparato de Golgi/genética , Transglutaminasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA