Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956870

RESUMEN

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.

2.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141617

RESUMEN

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Gatos , Animales , Estudios Seroepidemiológicos , COVID-19/epidemiología , COVID-19/veterinaria , Anticuerpos Antivirales , Reino Unido/epidemiología
3.
Biotechnol Bioeng ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526313

RESUMEN

Lentiviral vectors (LVs) are used in advanced therapies to transduce recipient cells for long term gene expression for therapeutic benefit. The vector is commonly pseudotyped with alternative viral envelope proteins to improve tropism and is selected for enhanced functional titers. However, their impact on manufacturing and the success of individual bioprocessing unit operations is seldom demonstrated. To the best of our knowledge, this is the first study on the processability of different Lentiviral vector pseudotypes. In this work, we compared three envelope proteins commonly pseudotyped with LVs across manufacturing conditions such as temperature and pump flow and across steps common to downstream processing. We have shown impact of filter membrane chemistry on vector recoveries with differing envelopes during clarification and observed complete vector robustness in high shear manufacturing environments using ultra scale-down technologies. The impact of shear during membrane filtration in a tangential flow filtration-mimic showed the benefit of employing higher shear rates, than currently used in LV production, to increase vector recovery. Likewise, optimized anion exchange chromatography purification in monolith format was determined. The results contradict a common perception that lentiviral vectors are susceptible to shear or high salt concentration (up to 1.7 M). This highlights the prospects of improving LV recovery by evaluating manufacturing conditions that contribute to vector losses for specific production systems.

4.
J Infect Dis ; 225(6): 971-976, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34751775

RESUMEN

We compared neutralizing antibody titers of convalescent samples collected before and after the emergence of novel strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), against the wild-type virus and Alpha (B.1.1.7) and Beta (B.1.351) variants. Plasma samples collected in 2020 before emergence of variants showed reduced titers against the Alpha variants, and both sets of samples demonstrated significantly reduced titers against Beta. Comparison of microneutralization titers with those obtained with pseudotype and hemagglutination tests showed a good correlation between their titers and effects of strain variation, supporting the use of these simpler assays for assessing the potency of convalescent plasma against currently circulating and emerging strains of SARS-CoV-2.


Asunto(s)
COVID-19/terapia , SARS-CoV-2 , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Humanos , Inmunización Pasiva , SARS-CoV-2/genética , Sueroterapia para COVID-19
5.
J Gen Virol ; 102(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830908

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked not only the entry of SARS-CoV-2, but also MERS- and SARS-CoV pseudotyped lentiviral vectors and inhibited virus infections in vitro. Mechanistically, inhibition of the SARS-CoV-2 spike-receptor interaction was observed. Thus, EGCG might be suitable for use as a lead structure to develop more effective anti-COVID-19 drugs.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , SARS-CoV-2/efectos de los fármacos , Té/química , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/fisiología , COVID-19/prevención & control , COVID-19/virología , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Células HEK293 , Humanos , Lentivirus/efectos de los fármacos , Lentivirus/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
6.
Molecules ; 26(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924393

RESUMEN

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.


Asunto(s)
Antivirales/síntesis química , Monoterpenos Bicíclicos/química , Antivirales/química , Ebolavirus/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Orthomyxoviridae/efectos de los fármacos , Estructura Secundaria de Proteína , Pirrolidinas/química
7.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29212933

RESUMEN

We have produced a new Ebola virus pseudotype, E-S-FLU, that can be handled in biosafety level 1/2 containment for laboratory analysis. The E-S-FLU virus is a single-cycle influenza virus coated with Ebolavirus glycoprotein, and it encodes enhanced green fluorescence protein as a reporter that replaces the influenza virus hemagglutinin. MDCK-SIAT1 cells were transduced to express Ebolavirus glycoprotein as a stable transmembrane protein for E-S-FLU virus production. Infection of cells with the E-S-FLU virus was dependent on the Niemann-Pick C1 protein, which is the well-characterized receptor for Ebola virus entry at the late endosome/lysosome membrane. The E-S-FLU virus was neutralized specifically by an anti-Ebolavirus glycoprotein antibody and a variety of small drug molecules that are known to inhibit the entry of wild-type Ebola virus. To demonstrate the application of this new Ebola virus pseudotype, we show that a single laboratory batch was sufficient to screen a library (LOPAC1280; Sigma) of 1,280 pharmacologically active compounds for inhibition of virus entry. A total of 215 compounds inhibited E-S-FLU virus infection, while only 22 inhibited the control H5-S-FLU virus coated in H5 hemagglutinin. These inhibitory compounds have very dispersed targets and mechanisms of action, e.g., calcium channel blockers, estrogen receptor antagonists, antihistamines, serotonin uptake inhibitors, etc., and this correlates with inhibitor screening results obtained with other pseudotypes or wild-type Ebola virus in the literature. The E-S-FLU virus is a new tool for Ebola virus cell entry studies and is easily applied to high-throughput screening assays for small-molecule inhibitors or antibodies.IMPORTANCE Ebola virus is in the Filoviridae family and is a biosafety level 4 pathogen. There are no FDA-approved therapeutics for Ebola virus. These characteristics warrant the development of surrogates for Ebola virus that can be handled in more convenient laboratory containment to study the biology of the virus and screen for inhibitors. Here we characterized a new surrogate, named E-S-FLU virus, that is based on a disabled influenza virus core coated with the Ebola virus surface protein but does not contain any genetic information from the Ebola virus itself. We show that E-S-FLU virus uses the same cell entry pathway as wild-type Ebola virus. As an example of the ease of use of E-S-FLU virus in biosafety level 1/2 containment, we showed that a single production batch could provide enough surrogate virus to screen a standard small-molecule library of 1,280 candidates for inhibitors of viral entry.


Asunto(s)
Ebolavirus/fisiología , Virus de la Influenza A , Glicoproteínas de Membrana/metabolismo , Receptores Virales/metabolismo , Proteínas de la Matriz Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Cloroquina/farmacología , Perros , Ebolavirus/genética , Expresión Génica , Genes Reporteros , Ingeniería Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Células de Riñón Canino Madin Darby , Glicoproteínas de Membrana/genética , Bibliotecas de Moléculas Pequeñas , Transducción Genética , Proteínas de la Matriz Viral/genética
8.
Acta Virol ; 59(2): 189-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26104337

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes Chikungunya fever (CHIKF) in millions of people mainly in developing countries. CHIKF is characterized by high fever, fatigue, headache, nausea, vomiting, rash, myalgia and severe arthralgia. To date, there is no specific treatment and no licensed vaccine against CHIKV infection. In this study, we developed a safe, efficient and easy neutralization assay of CHIKV based on vesicular stomatitis virus (VSV) pseudotype with CHIKV envelope protein and the green fluorescent protein (GFP) or luciferase as reporter gene, which could be used under a reduced safety level. The VSV pseudotype can be applied to the epidemic survey by measuring the expression of GFP or luciferase activity in infected cells. This system can also be used to study the mechanisms of virus entry.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/genética , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Envoltorio Viral/genética , Animales , Línea Celular , Virus Chikungunya/metabolismo , Genes Reporteros , Ingeniería Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estomatitis Vesicular , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas del Envoltorio Viral/metabolismo
9.
J Vet Med Sci ; 86(1): 128-134, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38092389

RESUMEN

Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.


Asunto(s)
Lyssavirus , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Conejos , Rabia/veterinaria , Anticuerpos Antivirales , Pseudotipado Viral/veterinaria , Anticuerpos Neutralizantes , Glicoproteínas , Zoonosis
10.
Virus Res ; 339: 199262, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37931881

RESUMEN

Infection with equid herpesvirus 1 (EHV-1), a DNA virus of the Herpesviridae family represents a significant welfare issue in horses and a great impact on the equine industry. During EHV-1 infection, entry of the virus into different cell types is complex due to the presence of twelve glycoproteins (GPs) on the viral envelope. To investigate virus entry mechanisms, specific combinations of GPs were pseudotyped onto lentiviral vectors. Pseudotyped virus (PV) particles bearing gB, gD, gH and gL were able to transduce several target cell lines (HEK293T/17, RK13, CHO-K1, FHK-Tcl3, MDCK I & II), demonstrating that these four EHV-1 glycoproteins are both essential and sufficient for cell entry. The successful generation of an EHV-1 PV permitted development of a PV neutralisation assay (PVNA). The efficacy of the PVNA was tested by measuring the level of neutralising serum antibodies from EHV-1 experimentally infected horses (n = 52) sampled in a longitudinal manner. The same sera were assessed using a conventional EHV-1 virus neutralisation (VN) assay, exhibiting a strong correlation (r = 0.82) between the two assays. Furthermore, PVs routinely require -80 °C for long term storage and a dry ice cold-chain during transport, which can impede dissemination and utilisation in other stakeholder laboratories. Consequently, lyophilisation of EHV-1 PVs was conducted to address this issue. PVs were lyophilised and pellets either reconstituted immediately or stored under various temperature conditions for different time periods. The recovery and functionality of these lyophilised PVs was compared with standard frozen aliquots in titration and neutralisation tests. Results indicated that lyophilisation could be used to stably preserve such complex herpesvirus pseudotypes, even after weeks of storage at room temperature, and that reconstituted EHV-1 PVs could be successfully employed in antibody neutralisation tests.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Herpesvirus Équido 4 , Enfermedades de los Caballos , Humanos , Animales , Caballos , Herpesvirus Équido 1/genética , Células HEK293 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Infecciones por Herpesviridae/veterinaria , Glicoproteínas , Herpesvirus Équido 4/genética
11.
Front Immunol ; 15: 1352022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698856

RESUMEN

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Asunto(s)
Factor H de Complemento , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A , Gripe Humana , Unión Proteica , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/inmunología , Animales , Gripe Humana/inmunología , Gripe Humana/virología , Gripe Humana/metabolismo , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Sitios de Unión , Gripe Aviar/virología , Gripe Aviar/inmunología , Gripe Aviar/metabolismo , Aves/virología , Interacciones Huésped-Patógeno/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología
12.
Front Immunol ; 14: 1184362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790941

RESUMEN

Background: The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays. Methods: Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our searches identified 67 reports, of which 22 underwent a three-level meta-analysis. Results: The three-level meta-analysis revealed a high level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped Ebola viruses. Conclusion: Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses.


Asunto(s)
Ebolavirus , Pseudotipado Viral
13.
Genes Dis ; 10(5): 1937-1955, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492721

RESUMEN

Gene therapy holds great promise for curing cancer by editing the deleterious genes of tumor cells, but the lack of vector systems for efficient delivery of genetic material into specific tumor sites in vivo has limited its full therapeutic potential in cancer gene therapy. Over the past two decades, increasing studies have shown that lentiviral vectors (LVs) modified with different glycoproteins from a donating virus, a process referred to as pseudotyping, have altered tropism and display cell-type specificity in transduction, leading to selective tumor cell killing. This feature of LVs together with their ability to enable high efficient gene delivery in dividing and non-dividing mammalian cells in vivo make them to be attractive tools in future cancer gene therapy. This review is intended to summarize the status quo of some typical pseudotypings of LVs and their applications in basic anti-cancer studies across many malignancies. The opportunities of translating pseudotyped LVs into clinic use in cancer therapy have also been discussed.

14.
Methods Mol Biol ; 2610: 187-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36534292

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 causes worldwide COVID-19 pandemic and poses a great threat to global public health. Due to its high pathogenicity and infectivity, live SARS-CoV-2 is classified as a BSL-3 agent and has to be handled in BSL-3 condition. Nevertheless, entry of SARS-CoV-2 is mediated by viral spike (S) glycoprotein, and pseudovirus with SARS-CoV-2 S protein can mimic every entry step of SARS-CoV-2 virus and be studied in BSL-2 settings. In this chapter, we describe a detailed protocol of production of lentivirus-based SARS-CoV-2 S pseudovirus and its application in study of virus entry and determination of neutralizing antibody titer of human sera against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Anticuerpos Antivirales , Pruebas de Neutralización/métodos , Pandemias , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus , Glicoproteínas
15.
Methods Protoc ; 7(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38251196

RESUMEN

Flaviviruses are a family of RNA viruses that includes many known pathogens, such as Zika virus (ZIKV), West Nile virus (WNV), dengue virus (DENV), and yellow fever virus (YFV). A pseudotype is an artificial virus particle created in vitro by incorporating the flavivirus envelope proteins into the structure of, for example, a retrovirus such as human immunodeficiency virus type-1 (HIV-1). They can be a useful tool in virology for understanding the biology of flaviviruses, evaluating immune responses, developing antiviral strategies but can also be used as vectors for gene transfer experiments. This protocol describes the generation of a ZIKV/HIV-1 pseudotype developed as a new tool for infecting cells derived from a highly malignant brain tumor: glioblastoma multiforme grade 4.

16.
Front Immunol ; 14: 1118523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911730

RESUMEN

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Epítopos , Vacunas contra la COVID-19 , Polisacáridos , Anticuerpos Neutralizantes
17.
Mol Ther Methods Clin Dev ; 28: 366-384, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36879849

RESUMEN

Barriers to effective gene therapy for many diseases include the number of modified target cells required to achieve therapeutic outcomes and host immune responses to expressed therapeutic proteins. As long-lived cells specialized for protein secretion, antibody-secreting B cells are an attractive target for foreign protein expression in blood and tissue. To neutralize HIV-1, we developed a lentiviral vector (LV) gene therapy platform for delivery of the anti-HIV-1 immunoadhesin, eCD4-Ig, to B cells. The EµB29 enhancer/promoter in the LV limited gene expression in non-B cell lineages. By engineering a knob-in-hole-reversed (KiHR) modification in the CH3-Fc eCD4-Ig domain, we reduced interactions between eCD4-Ig and endogenous B cell immunoglobulin G proteins, which improved HIV-1 neutralization potency. Unlike previous approaches in non-lymphoid cells, eCD4-Ig-KiHR produced in B cells promoted HIV-1 neutralizing protection without requiring exogenous TPST2, a tyrosine sulfation enzyme required for eCD4-Ig-KiHR function. This finding indicated that B cell machinery is well suited to produce therapeutic proteins. Lastly, to overcome the inefficient transduction efficiency associated with VSV-G LV delivery to primary B cells, an optimized measles pseudotyped LV packaging methodology achieved up to 75% transduction efficiency. Overall, our findings support the utility of B cell gene therapy platforms for therapeutic protein delivery.

18.
mBio ; : e0208723, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874146

RESUMEN

Membrane fusion mediated by herpes simplex virus 1 (HSV-1) is a complex, multi-protein process that is receptor triggered and can occur both at the cell surface and in endosomes. To deconvolute this complexity, we reconstituted HSV-1 fusion with synthetic lipid vesicles in vitro. Using this simplified, controllable system, we discovered that HSV-1 fusion required not only a cognate host receptor but also low pH. On the target membrane side, efficient fusion required cholesterol, negatively charged lipids found in the endosomal membranes, and an optimal balance of lipid order and disorder. On the virion side, the four HSV-1 entry glycoproteins-gB, gD, gH, and gL-were sufficient for fusion. We propose that low pH is a biologically relevant co-trigger for HSV-1 fusion. The dependence of fusion on low pH and endosomal lipids could explain why HSV-1 enters most cell types by endocytosis. We hypothesize that under neutral pH conditions, other, yet undefined, cellular factors may serve as fusion co-triggers. The in vitro fusion system established here can be employed to systematically investigate HSV-1-mediated membrane fusion.IMPORTANCEHSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.

19.
Vaccines (Basel) ; 10(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146598

RESUMEN

To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1-N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens. We also show that the pELLA is more sensitive than the commercially available NA-Fluor™ in detecting NA inhibition in these samples. Our studies may lead to establishing the protective NA titer that contributes to NA-based immunity. This will aid in the design of superior, longer lasting and more broadly protective vaccines that can be employed together with HA-targeted vaccines in a pre-pandemic approach.

20.
EBioMedicine ; 79: 103990, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35405384

RESUMEN

BACKGROUND: The sarbecovirus subgenus of betacoronaviruses is widely distributed throughout bats and other mammals globally and includes human pathogens, SARS-CoV and SARS-CoV-2. The most studied sarbecoviruses use the host protein, ACE2, to infect cells. Curiously, the majority of sarbecoviruses identified to date do not use ACE2 and cannot readily acquire ACE2 binding through point mutations. We previously screened a broad panel of sarbecovirus spikes for cell entry and observed bat-derived viruses that could infect human cells, independent of ACE2. Here we further investigate the sequence determinants of cell entry for ACE2-independent bat sarbecoviruses. METHODS: We employed a network science-based approach to visualize sequence and entry phenotype similarities across the diversity of sarbecovirus spike protein sequences. We then verified these computational results and mapped determinants of viral entry into human cells using recombinant chimeric spike proteins within an established viral pseudotype assay. FINDINGS: We show ACE2-independent viruses that can infect human and bat cells in culture have a similar putative receptor binding motif, which can impart human cell entry into other bat sarbecovirus spikes that cannot otherwise infect human cells. These sequence determinants of human cell entry map to a surface-exposed protrusion from the predicted bat sarbecovirus spike receptor binding domain structure. INTERPRETATION: Our findings provide further evidence of a group of bat-derived sarbecoviruses with zoonotic potential and demonstrate the utility in applying network science to phenotypic mapping and prediction. FUNDING: This work was supported by Washington State University and the Paul G. Allen School for Global Health.


Asunto(s)
COVID-19 , Quirópteros , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Enzima Convertidora de Angiotensina 2/genética , Animales , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA