Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int Endod J ; 57(9): 1279-1292, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38828966

RESUMEN

AIM: To evaluate the role of biomimetic pulp scaffolds derived from the extracellular matrix derived of stem cells from human exfoliated deciduous teeth (SHED-ECM-PS) in promoting pulp-dentine complex regeneration. METHODOLOGY: SHED-ECM-PS was prepared through cell aggregation and decellularization techniques. Histological and immunofluorescence analyses, scanning electron microscopy, and DNA quantification assays were used to characterize the SHED-ECM-PS. Additionally, a tooth slice implantation model was established to evaluate the effects of SHED-ECM-PS on regeneration of the pulp-dentine complex in vivo. Extraction medium for SHED-ECM-PS was prepared, and its effect on bone marrow mesenchymal stem cells (BMMSCs) was assessed in vitro. Cell counting kit-8 and Ki-67 staining assays were performed to determine cell proliferation. The rate of apoptosis was evaluated by flow cytometry. Wound healing and transwell assays were conducted to evaluate cell migration. Alizarin red S staining was performed to examine mineralized nodule formation. Western blotting was used to detect the expression of osteogenic and odontogenic markers. The results were analysed using an independent two-tailed Student's t-test. p < .05 was considered statistically significant. RESULTS: SHED-ECM-PS was successfully constructed, exhibiting a striped dental pulp-like shape devoid of nuclear structures or DNA components, and rich in fibronectin, collagen I, DMP1 and DSPP. Notably, SHED-ECM-PS showed no impact on the proliferation or apoptosis of BMMSCs. Histological analysis revealed that dental pulp fibroblasts formed an interwoven mesh in the root canal, and angiogenesis was observed in the SHED-ECM-PS group. Moreover, a continuous, newly formed tubular dentine layer with polarized odontoblast-like cells was observed along the inner wall of the root canal. SHED-ECM-PS promoted the migration, polar alignment and mineralized nodule formation of BMMSCs and specifically elevated the expression levels of odontogenic markers, but not osteogenic markers, compared with the control group in vitro. CONCLUSION: SHED-ECM-PS exhibited no cytotoxicity and promoted pulp-dentine complex regeneration in vivo as well as cell migration and odontogenic differentiation of BMMSCs in vitro. These findings provide evidence that SHED-ECM-PS, as a novel biological scaffold, has the potential to improve the outcomes of REPs.


Asunto(s)
Proliferación Celular , Pulpa Dental , Dentina , Matriz Extracelular , Regeneración , Andamios del Tejido , Diente Primario , Humanos , Diente Primario/citología , Pulpa Dental/citología , Células Madre , Células Madre Mesenquimatosas , Movimiento Celular , Animales , Microscopía Electrónica de Rastreo , Odontogénesis , Diferenciación Celular , Células Cultivadas
2.
Int Endod J ; 55(12): 1277-1316, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36039729

RESUMEN

BACKGROUND: Pulp-dentine complex regeneration via tissue engineering is a developing treatment modality that aims to replace necrotic pulps with newly formed healthy tissue inside the root canal. Designing and fabricating an appropriate scaffold is a crucial step in such a treatment. OBJECTIVES: The present study aimed to review recent advances in the design and fabrication of scaffolds for de novo regeneration of pulp-dentine complexes via tissue engineering approaches. METHODS: A literature search was conducted using PubMed, Europe PMC, Scopus and Google Scholar databases. To highlight bioengineering techniques for de novo regeneration of pulp-dentine complexes, both in vitro and in vivo studies were included, and clinical studies were excluded. RESULTS: In the present review, four main classes of scaffolds used to engineer pulp-dentine complexes, including bioceramic-based scaffolds, synthetic polymer-based scaffolds, natural polymer-based scaffolds and composite scaffolds, are covered. Additionally, recent advances in the design, fabrication and application of such scaffolds are analysed along with their advantages and limitations. Finally, the importance of vascular network establishment in the success of pulp-dentine complex regeneration and strategies used to create scaffolds to address this challenge are discussed. DISCUSSION: In the tissue engineering platform, scaffolds provide structural support for cells to adhere and proliferate and also regulate cell differentiation and metabolism. Up to now, considerable progress has been achieved in the field of pulp-dentine complex tissue engineering, and a spectrum of scaffolds ranging from bioceramic-based to naturally derived scaffolds has been fabricated. However, in designing a suitable scaffold for engineering pulp-dentine complexes, a variety of characteristic parameters related to biological, structural, physical and chemical features should be considered. CONCLUSION: The variety of biomaterials and fabrication techniques provides a great opportunity to address some of the requirements for scaffolds in regenerative endodontics. However, more studies are required to develop an ideal scaffold for use in a clinical setting.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Regeneración/fisiología , Pulpa Dental , Dentina/fisiología , Polímeros
3.
Int Endod J ; 50(3): 271-280, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26913571

RESUMEN

AIM: To analyse the effect of systemic application of N-methyl pyrrolidone (NMP) on the pulp-dentine complex and on the jawbone of ovariectomized rats. METHOD: Female Sprague Dawley rats were randomly divided into a Sham-operated group (Sham n = 6) and an oestrogen depletion by ovariectomy (OVX n = 12) group. In 6 of the ovariectomized animals, N-methyl pyrrolidone (NMP) in phosphate-buffered saline (PBS) was administered systemically weekly by intraperitoneal injection (i.p.); the other 6 were injected with PBS (Veh). After 15 weeks of injections, the jaw bones were collected and pulps extracted from the incisors teeth. Histology was used to determine pre-dentine thickness in teeth and radiography to determine alveolar bone mass. Immunohistological staining and RT-PCR were performed to verify the presence and localization of the odontoblast-specific dentine sialoprotein and to quantify its expression in the dentine-pulp complex. Mandibular cortical width and mandibular height were evaluated by means of X-ray analysis. Statistical analysis was performed with analysis of variance (anova). RESULTS: Both pre-dentine (P = 0.029) and alveolar bone structures (P = 0.049) were significantly reduced due to oestrogen deficiency in OVX Veh and OVX. NMP treatment normalized these parameters to the Sham level. DSPP expression in OVX NMP animals was significantly higher (P = 0.046) than in OVX Veh. X-ray analysis confirmed that ovariectomy significantly reduced the mandibular cortical width in the OVX Veh group compared to the Sham Veh and OVX NMP (P = 0.020). CONCLUSION: N-methyl pyrrolidone (NMP) had a remarkable anti-osteoporotic ability preserving activity in the pulp-dentine complex and preventing jawbone loss. These effects make NMP a promising candidate for the preservation of the activity of the pulp-dentine complex and jawbone thickness in post-menopausal females.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Pulpa Dental/efectos de los fármacos , Dentina/efectos de los fármacos , Osteoporosis/prevención & control , Pirrolidinonas/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Maxilares/diagnóstico por imagen , Maxilares/efectos de los fármacos , Maxilares/patología , Ovariectomía , Pirrolidinonas/uso terapéutico , Distribución Aleatoria , Ratas Sprague-Dawley
4.
Arch Oral Biol ; 129: 105197, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34146928

RESUMEN

OBJECTIVE: Our goal was to define trigeminal nerve ending quantities and patterns in rat molar dentine, their responses to attrition (tooth wear), and their associated odontoblasts and connections with pulpal plexuses. DESIGN: Trigeminal ganglia were labeled for axonal transport of 3H-proteins to dentinal nerve endings in male rats (3-13 months old). Autoradiography detected radio-labeled dentinal tubules as indicators of nerve ending locations. Quantitative morphometry was done (ANOVA, t-tests), and littermates were compared for attrition and innervation. RESULTS: There were six dentinal patterns, only two of which had an associated neural plexus of Raschkow and cell-free zone (Den-1, Den-2). Other nerves entered dentin from bush-like endings near elongated odontoblasts (Den-B), as single fibers (Den-X), as networks in predentine (PdN), or as single fibers in tertiary dentine at cusp tips (Den-S). There were at least 186,600 innervated dentinal tubules within the set of three right maxillary molars of the best-labeled rat, and similar densities were found in other rats. Attrition levels differed among cusps and in littermates (t-test p < 0.02-0.0001), but the matched right/left cusps per rat were similar. Innervations of tertiary and enamel-free dentine (Den-S, Den-X) were preserved in all rats. Den-B and Den-2 coronal patterns were unchanged unless displaced by dentinogenesis. Den-1 losses occurred in older cusps, while Den-2 patterns increased near cervical and intercuspal odontoblasts. CONCLUSIONS: The extensive molar dentinal innervation had unique distributions per rat per cusp that depended on region (buccal, middle, palatal) and attrition, but only two of six patterns connected to a plexus of Raschkow.


Asunto(s)
Dentina , Odontoblastos , Animales , Pulpa Dental , Masculino , Diente Molar , Ratas , Nervio Trigémino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA