Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(44): e2303473120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874860

RESUMEN

Interface engineering in heterostructures at the atomic scale has been a central research focus of nanoscale and quantum material science. Despite its paramount importance, the achievement of atomically ordered heterointerfaces has been severely limited by the strong diffusive feature of interfacial atoms in heterostructures. In this work, we first report a strong dependence of interfacial diffusion on the surface polarity. Near-perfect quantum interfaces can be readily synthesized on the semipolar plane instead of the conventional c-plane of GaN/AlN heterostructures. The chemical bonding configurations on the semipolar plane can significantly suppress the cation substitution process as evidenced by first-principles calculations, which leads to an atomically sharp interface. Moreover, the surface polarity of GaN/AlN can be readily controlled by varying the strain relaxation process in core-shell nanostructures. The obtained extremely confined, interdiffusion-free ultrathin GaN quantum wells exhibit a high internal quantum efficiency of ~75%. Deep ultraviolet light-emitting diodes are fabricated utilizing a scalable and robust method and the electroluminescence emission is nearly free of the quantum-confined Stark effect, which is significant for ultrastable device operation. The presented work shows a vital path for achieving atomically ordered quantum heterostructures for III-nitrides as well as other polar materials such as III-arsenides, perovskites, etc.

2.
Nano Lett ; 24(18): 5647-5655, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655813

RESUMEN

Anisotropic nanocrystals such as nanorods (NRs) display unique linearly polarized emission, which is expected to break the external quantum efficiency (EQE) limit of quantum dot-based light-emitting diodes (LEDs). However, the progress in achieving a higher EQE using NRs encounters several challenges, primarily involving a low photoluminescence quantum yield (PLQY) of NRs and imbalanced charge injection in NR-LEDs. In this work, we investigated NR-LEDs based on CdSe/CdZnS/ZnS rod-in-rod NRs with a high PLQY and higher linear polarization compared to those of dot-in-rod NRs. The balanced charge injection is achieved using ZnMgO nanoparticles as the electron transport layer and poly-TPD {poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine]} as the hole transport layer. Therefore, the NR-LEDs exhibit a maximum EQE of 21.5% and a maximum luminance of >120 000 cd/m2 owing to the high level of in-plane transitions with a dipole moment of 90%. The NR-LEDs also have greatly inhibited droop in EQE under a high current density as well as outstanding operation lifetime and cycle stability.

3.
Nano Lett ; 24(13): 3952-3960, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38527956

RESUMEN

Despite light-emitting diodes (LEDs) based on quasi-two-dimensional (Q-2D) perovskites being inexpensive and exhibiting high performance, defects still limit the improvement of electroluminescence efficiency and stability by causing nonradiative recombination. Here, an organic molecule, 1-(o-tolyl) biguanide, is used to simultaneously inhibit and passivate defects of Q-2D perovskites via in situ synchronous crystallization. This molecule not only prevents surface bromine vacancies from forming through hydrogen bonding with the bromine of intermediaries but also passivates surface defects through its interaction with uncoordinated Pb. Via combination of defect inhibition and passivation, the trap density of Q-2D perovskite films can be significantly reduced, and the emission efficiency of the film can be improved. Consequently, the corresponding LED shows an external quantum efficiency of 24.3%, and its operational stability has been increased nearly 15 times.

4.
Nano Lett ; 24(23): 6997-7003, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38721805

RESUMEN

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

5.
Nano Lett ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753313

RESUMEN

Carrier multiplication (CM) in semiconductors, the process of absorbing a single high-energy photon to form two or more electron-hole pairs, offers great potential for the high-response detection of high-energy photons in the ultraviolet spectrum. However, compared to two-dimensional semiconductors, conventional bulk semiconductors not only face integration and flexibility bottlenecks but also exhibit inferior CM performance. To attain efficient CM for ultraviolet detection, we designed a two-terminal photodetector featuring a unilateral Schottky junction based on a two-dimensional γ-InSe/graphene heterostructure. Benefiting from a strong built-in electric field, the photogenerated high-energy electrons in γ-InSe, an ideal ultraviolet light-absorbing layer, can efficiently transfer to graphene without cooling. It results in efficient CM within the graphene, yielding an ultrahigh responsivity of 468 mA/W and a record-high external quantum efficiency of 161.2% when it is exposed to 360 nm light at zero bias. This work provides valuable insights into developing next-generation ultraviolet photodetectors with high performance and low-power consumption.

6.
Small ; : e2403345, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118557

RESUMEN

Although brightness and efficiency have been continually improved, the inability to achieve superior efficiency, color stability, and low-efficiency roll-off simultaneously in white organic light-emitting diodes (OLEDs) remains a knotty problem restricting the commercial application. In this paper, emission balance for two different horizontal orientation emitting molecules is maintained by using hole transport materials and bipolar host materials to control carriers' recombination and exciton diffusion. Impressively, the obtained devices exhibit extremely stable white emission with small chromaticity coordinates variation of (0.0023, 0.0078) over a wide brightness range from 1000 to 50000 cd m-2. Meanwhile, the optimal white OLED realizes the power efficiency, current efficiency, and external quantum efficiency up to 70.68 lm W-1, 85.53 cd A-1, and 24.33%, respectively at the practical brightness of 1000 cd m-2. Owing to reduced heterogeneous interfaces and broadening recombination region, this device exhibits a high EQE over 20% under high luminance of 10000 cd m-2, demonstrating slight efficiency roll-off. The operating mechanism of the device is analyzed by versatile experimental and theoretical evidences, which concludes precise manipulation of charges and excitons is the key points to achieve these excellent performances. This work provides an effective strategy for the design of high-performance white OLEDs.

7.
Small ; : e2405933, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370566

RESUMEN

In 2024, tandem perovskite light-emitting diodes (tandem-PLEDs) achieved a breakthrough external quantum efficiency of 43.42%, with an organic electroluminescence (EL) unit stacked atop a perovskite EL unit, surpassing the previous single-junction perovskite LEDs. This innovative design enables a higher brightness at lower currents, enhancing the longevity and efficiency of the tandem-PLEDs. Additionally, the tandem-PLEDs can also be fabricated by combining a perovskite EL unit with a perovskite quantum dot unit. In this perspective, the key advancements in tandem-PLEDs are highlighted, focusing on the development of perovskite-organic materials, perovskite-perovskite quantum dots, and the design principles for obtaining efficient and stable charge generation layers. But more importantly, the challenges and solutions are discussed in fabricating all-perovskite tandem LEDs using strongly polar solvents that have yet to be reported nowadays. This comprehensive guide aims to support researchers in advancing the practical deployment of tandem-PLED technology.

8.
New Phytol ; 242(2): 431-443, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38406986

RESUMEN

Theoretically, the PEP-CK C4 subtype has a higher quantum yield of CO2 assimilation ( Φ CO 2 ) than NADP-ME or NAD-ME subtypes because ATP required for operating the CO2-concentrating mechanism is believed to mostly come from the mitochondrial electron transport chain (mETC). However, reported Φ CO 2 is not higher in PEP-CK than in the other subtypes. We hypothesise, more photorespiration, associated with higher leakiness and O2 evolution in bundle-sheath (BS) cells, cancels out energetic advantages in PEP-CK species. Nine species (two to four species per subtype) were evaluated by gas exchange, chlorophyll fluorescence, and two-photon microscopy to estimate the BS conductance (gbs) and leakiness using a biochemical model. Average gbs estimates were 2.9, 4.8, and 5.0 mmol m-2 s-1 bar-1, and leakiness values were 0.129, 0.179, and 0.180, in NADP-ME, NAD-ME, and PEP-CK species, respectively. The BS CO2 level was somewhat higher, O2 level was marginally lower, and thus, photorespiratory loss was slightly lower, in NADP-ME than in NAD-ME and PEP-CK species. Differences in these parameters existed among species within a subtype, and gbs was co-determined by biochemical decarboxylating sites and anatomical characteristics. Our hypothesis and results partially explain variations in observed Φ CO 2 , but suggest that PEP-CK species probably use less ATP from mETC than classically defined PEP-CK mechanisms.


Asunto(s)
Dióxido de Carbono , NAD , NADP , Hojas de la Planta , Fotosíntesis , Adenosina Trifosfato
9.
Photosynth Res ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329705

RESUMEN

The green algal genus Picochlorum is of biotechnological interest because of its robust response to multiple environmental stresses. We compared the metabolic performance of P. SE3 and P. oklahomense to diverse microbial phototrophs and observed exceptional performance of photosystem II (PSII) in light energy conversion in both Picochlorum species. The quantum yield (QY) for O2 evolution is the highest of any phototroph yet observed, 32% (20%) by P. SE3 (P. okl) when normalized to total PSII subunit PsbA (D1) protein, and 80% (75%) normalized per active PSII, respectively. Three factors contribute: (1) an efficient water oxidizing complex (WOC) with the fewest photochemical misses of any organism; (2) faster reoxidation of reduced (PQH2)B in P. SE3 than in P. okl. (period-2 Fourier amplitude); and (3) rapid reoxidation of the plastoquinol pool by downstream electron carriers (Cyt b6f/PETC) that regenerates PQ faster in P. SE3. This performance gain is achieved without significant residue changes around the QB site and thus points to a pull mechanism involving faster PQH2 reoxidation by Cyt b6f/PETC that offsets charge recombination. This high flux in P. SE3 may be explained by genomically encoded plastoquinol terminal oxidases 1 and 2, whereas P. oklahomense has neither. Our results suggest two distinct types of PSII centers exist, one specializing in linear electron flow and the other in PSII-cyclic electron flow. Several amino acids within D1 differ from those in the low-light-descended D1 sequences conserved in Viridiplantae, and more closely match those in cyanobacterial high-light D1 isoforms, including changes near tyrosine Yz and a water/proton channel near the WOC. These residue changes may contribute to the exceptional performance of Picochlorum at high-light intensities by increasing the water oxidation efficiency and the electron/proton flux through the PSII acceptors (QAQB).

10.
Chemistry ; : e202403192, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344795

RESUMEN

Designing a high performance solar cell structure requires the understanding of material innovation, device engineering, charge behavior, operation characteristics and efficient photoconversion of light to generate electricity. This study offers a detailed numerical evaluation of the device physics in a highly efficient methylammonium-based perovskite solar cell (PSC) of the configuration, FTO/WO3/CH3NH3SnI3/GO/Fe. Utilizing the SCAPS-1D device simulator, an impressive open-circuit voltage (Voc) of 1.3184 V, short-circuit current density (Jsc) of 35.10 mA/cm², Fill factor (FF) of 78.38%, and power conversion efficiency (PCE) of 36.24% were achieved. The model cell exhibits a robust photon capture of 100% quantum efficiency between 360 and 750 nm.  The study also presents temperature-dependent band alignment diagram which posted a built-in potential (Vbi) of 0.62 eV. The Vbi at 400 K was found to be 0.58 eV indicating that the model cell exhibits a decent temperature tolerance, and can retain approximately 93% of its power at 400 K. Through Mott-Schottky capacitance analysis, deeper insights into the space-charge region are inferred, while recombination-generation investigations emphasize the significance of electronic properties in optimizing device performance. This paper, therefore, lays the foundation for future studies, offering clear pathways for device optimization and identifying key areas that require further investigation.

11.
Nanotechnology ; 35(33)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38723610

RESUMEN

The self-powered PVP-Co@C nanofibers/n-GaAs heterojunction photodetector (HJPD) was fabricated by electrospinning of the nanofibers onto GaAs. An excellent rectification ratio of 6.60 × 106was obtained fromI-Vmeasurements of the device in the dark. TheI-Vmeasurements of the fabricated device under 365 nm, 395 nm and 850 nm lights, as well asI-Vmeasurements in visible light depending on the light intensity, were performed. The HJPD demonstrated excellent photodetection performance in terms of a good responsivity of âˆ¼225 mA W-1(at -1.72 V) and at zero bias, an impressive detectivity of 6.28 × 1012Jones, and a high on/off ratio of 8.38 × 105, all at 365 nm wavelength. In addition, the maximum external quantum efficiency and NPDR values were 3495% (V = -1.72 V) and 2.60 × 1010W-1(V= 0.0 V), respectively, while the minimum NEP value was ∼10-14W.Hz-1/2for 365 nm atV= 0.V volts. The HJPD also exhibited good long-term stability in air after 30 d without any encapsulation.

12.
J Fluoresc ; 34(1): 397-409, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37278962

RESUMEN

In the present system, Sm3+ activated Ba2BiV3O11 nanomaterial series radiating orange-red light was developed via an efficient approach of solution combustion method. The structural examinations using XRD analysis indicate that the sample is crystallized into the monoclinic phase with the P21/a (14) space group. The elemental composition and morphological conduct were studied via energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) respectively. Also, the formation of nanoparticles was confirmed by transmission electron microscopy (TEM). Photoluminescent (PL) examinations reveal the orange-red emission from the developed nanocrystals via documenting the emission spectra, which reveals the peak at 606 nm due to the 4G5/2 → 6H7/2 transition. Further, the decay time, non-radiative rates, quantum efficiency, and band gap of the optimal sample were computed as 1.3263 ms, 219.5 s- 1, 70.88%, and 3.41 eV respectively. Finally, the chromatic parameters including color - coordinates (0.5565, 0.4426), 1975 K color correlated temperature (CCT), and color purity (85.58%) reflected their excellent luminous performance. The above-mentioned outcomes endorsed the relevancy of the developed nanomaterials as a propitious agent in the engineering of advanced illuminating optoelectronic appliances.

13.
J Fluoresc ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457073

RESUMEN

Extensive investigations were conducted on the structural and photoluminescence characteristics of the present nanosamples, encompassing PL, TEM, PXRD, EDAX, CCT, and CIE research. PXRD studies established a single phase, and TEM instruments were used to examine the dimensions and topographical behavior. The EDAX analysis examined the magnitude of the different components that were present. Decay lifetimes, radiative and non-radiative energy transfer rates, and a number of intensity limitations have all been found using PL spectra. Two significant peaks were visible in the blue (B) and yellow (Y) regions of the photoluminescence (PL) spectra upon NUV excitation, at 486 nm and 577 nm. At 7 mol% Dy3+ ions, the PL intensity peaked. After that, it began to decline as a result of the concentration quenching process brought on by multipolar exchanges (s = 4.1445). The values of 0.86423 ms, 81%, and 226 s-1 were discovered to be the decay life time, non radiative rates, and quantum efficiency of the ideal powder, respectively. Further analysis of Sr3Y0.93Dy0.07(PO4)3 nanocrystals revealed that their chromaticity coordinates (0.305, 0.321), and CCT value (6902 K) matched those of NTSE and commercial LEDs, certifying their use in innovative optoelectronic appliances, particularly single phased WLEDs.

14.
J Fluoresc ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153166

RESUMEN

Solution combustion procedure was used to create a succession of Na3LaxSm1 - x(PO4)2 (x = 0.01-0.15 mol) nanocrystals that generate a warm deep reddish light. Both HR-TEM and X-ray diffraction examinations were used to examine the morphology and crystalline phase analysis. Energy-dispersive X-ray analysis (EDAX) approves the elemental examination. The luminescence spectrum exhibits a decent reddish-orange emission at 700 nm wavelength upon near-UV illumination, which aligns with the electronic transition 4G5/2 → 6H11/2. According to Dexter's idea, nearest neighbor interlinkages are responsible for the concentration quenching that occurs after the Sm3+ ion composition reaches 6 mol%. Additionally, a detailed evaluation of the radiative lifespan (0.7519 ms), quantum efficiency (77%), Non radiative rate (307.40), color temperature (3170 K), color purity (99.2%) and color coordinates (0.652, 0.338) was conducted. The optical characteristics that have been observed indicate that Sm3+ doped Na3La(PO4)2 phosphors could be a good option for improving WLED efficiency and color quality.

15.
J Fluoresc ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709378

RESUMEN

The double perovskite structure of Ca2GdSbO6 as a fluorescent phosphor matrix material possesses a stable structure, making it an excellent candidate for a matrix material. In this study, single-doped Ca2GdSbO6: Eu3+ fluorescent phosphors and Bi3+ sensitized Ca2GdSbO6: Eu3+, Bi3+ fluorescent phosphor materials were synthesized using the high-temperature solid-state method. The luminescence of this phosphor is based on the 5D0→4F2 transition emission of Eu3+ ions, which occurs at 612 nm. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra, high-temperature fluorescence spectra, and fluorescence decay lifetimes to study the phase structure, optical properties, crystal structure, and chemical purity of the samples. The performance of the single-doped phosphor was significantly improved by the addition of Bi3+ sensitizer. The luminescence intensity increased by nearly 100% compared to Ca2GdSbO6: Eu3+ phosphor, with a quantum efficiency increase of 124%. The thermal quenching activation energy was found to be 0.299 eV, and the luminescence intensity remained at 70.3% of room temperature at 453 K. These results indicate that the co-doping of Bi3+ has a modulation and enhancement effect on the luminescence of Ca2GdSbO6: Eu3+ red phosphor, showing great potential for application in near-ultraviolet-excited white LED devices.

16.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339659

RESUMEN

Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.

17.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475057

RESUMEN

PIN InGaAs short wavelength infrared (SWIR) focal plane array (FPA) detectors have attracted extensive attention due to their high detectivity, high quantum efficiency, room temperature operation, low dark current, and good radiation resistance. Furthermore, InGaAs FPA detectors have wide applications in many fields, such as aviation safety, biomedicine, camouflage recognition, and infrared night vision. Recently, extensive research has been conducted on the extension of the response spectrum from short wavelength infrared (SWIR) to visible light (VIS) through InP substrate removal and reserving the n-InP contact layer. However, there is little research on the absorption of InGaAs detectors in the ultraviolet (UV) band. In this paper, we present an ultra-broadband UV-VIS-SWIR 640 × 512 15 µm InGaAs FPA detector by removing the n-InP contact layer in the active area and reserving the InP contact layer around the pixels for n contact, creating incident light to be directly absorbed by the In0.53Ga0.47As absorption layer. In addition, the optical absorption characteristics of InGaAs infrared detectors with and without an n-InP contact layer are studied theoretically. The test results show that the spectral response is extended to the range of 200-1700 nm. The quantum efficiency is higher than 45% over a broad wavelength range of 300-1650 nm. The operability is up to 99.98%, and the responsivity non-uniformity is 3.28%. The imaging capability of InGaAs FPAs without the n-InP contact layer has also been demonstrated, which proves the feasibility of simultaneous detection for these three bands.

18.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930994

RESUMEN

The tetradentate ligand, merging a carbazole unit with high triplet energy and dimethoxy bipyridine, renowned for its exceptional quantum efficiency in coordination with metals like Pt, is expected to demonstrate remarkable luminescent properties. However, instances of tetradentate ligands such as bipyridine-based pyridylcarbazole derivatives remain exceptionally scarce in the current literature. In this study, we developed a tetradentate ligand based on carbazole and 2,3'-bipyridine and successfully complexed it with Pt(II) ions. This novel compound (1) serves as a sky-blue phosphorescent material for use in light-emitting diodes. Based on single-crystal X-ray analysis, compound 1 has a distorted square-planar geometry with a 5/6/6 backbone around the Pt(II) core. Bright sky-blue emissions were observed at 488 and 516 nm with photoluminescent quantum yields of 34% and a luminescent lifetime of 2.6 µs. TD-DFT calculations for 1 revealed that the electronic transition was mostly attributed to the ligand-centered (LC) charge transfer transition with a small contribution from the metal-to-ligand charge transfer transition (MLCT, ~14%). A phosphorescent organic light-emitting device was successfully fabricated using this material as a dopant, along with 3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (mCBP) and 9-(3'-carbazol-9-yl-5-cyano-biphenyl-3-yl)-9H-carbazole-3-carbonitrile (CNmCBPCN) as mixed hosts. A maximum quantum efficiency of 5.2% and a current efficiency of 15.5 cd/A were obtained at a doping level of 5%.

19.
Small ; 19(5): e2205834, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36403242

RESUMEN

Construction of 2D graphic carbon nitrides (g-CNx ) with wide visible light adsorption range and high charge separation efficiency concurrently is of great urgent demand and still very challenging for developing highly efficient photocatalysts for hydrogen evolution. To achieve this goal, a two-step pyrolytic strategy has been applied here to create ultrathin 2D g-CNx with extended the π-conjugation. It is experimentally proven that the extension of π-conjugation in g-CNx is not only beneficial to narrowing the bandgap, but also improving the charge separation efficiency of the g-CNx . As an integral result, extraordinary apparent quantum efficiencies (AQEs) of 57.3% and 7.0% at short (380 nm) and long (520 nm) wavelength, respectively, are achieved. The formation process of the extended π-conjugated structures in the ultrathin 2D g-CNx has been investigated using XRD, FT-IR, Raman, XPS, and EPR. Additionally, it has been illustrated that the two-step pyrolytic strategy is critical for creating ultrathin g-CNx nanosheets with extended π-conjugation by control experiments. This work shows a feasible and effective strategy to simultaneously expand the light adsorption range, enhance charge carrier mobility and depress electron-hole recombination of g-CNx for high-efficient photocatalytic hydrogen evolution.

20.
Small ; 19(47): e2304001, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37495833

RESUMEN

Even though the recent progress made in complementary metal-oxide-semiconductor (CMOS) image sensors (CIS) has enabled numerous applications affecting our daily lives, the technology still relies on conventional methods such as antireflective coatings and ion-implanted back-surface field to reduce optical and electrical losses resulting in limited device performance. In this work, these methods are replaced with nanostructured surfaces and atomic layer deposited surface passivation. The results show that such surface nanoengineering applied to a commercial backside illuminated CIS significantly extends its spectral range and enhances its photosensitivity as demonstrated by >90% quantum efficiency in the 300-700 nm wavelength range. The surface nanoengineering also reduces the dark current by a factor of three. While the photoresponse uniformity of the sensor is seen to be slightly better, possible scattering from the nanostructures can lead to increased optical crosstalk between the pixels. The results demonstrate the vast potential of surface nanoengineering in improving the performance of CIS for a wide range of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA