Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell ; 171(4): 877-889.e17, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28965759

RESUMEN

N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.


Asunto(s)
Neurogénesis , Prosencéfalo/embriología , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Animales , Ciclo Celular , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Organoides/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Estabilidad del ARN
2.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638999

RESUMEN

Neural precursors (NPs) present in the hippocampus can be modulated by several neurogenic stimuli, including environmental enrichment (EE) acting through BDNF-TrkB signaling. We have recently identified NPs in meninges; however, the meningeal niche response to pro-neurogenic stimuli has never been investigated. To this aim, we analyzed the effects of EE exposure on NP distribution in mouse brain meninges. Following neurogenic stimuli, although we did not detect modification of the meningeal cell number and proliferation, we observed an increased number of neural precursors in the meninges. A lineage tracing experiment suggested that EE-induced ß3-Tubulin+ immature neuronal cells present in the meninges originated, at least in part, from GLAST+ radial glia cells. To investigate the molecular mechanism responsible for meningeal reaction to EE exposure, we studied the BDNF-TrkB interaction. Treatment with ANA-12, a TrkB non-competitive inhibitor, abolished the EE-induced meningeal niche changes. Overall, these data showed, for the first time, that EE exposure induced meningeal niche remodeling through TrkB-mediated signaling. Fluoxetine treatment further confirmed the meningeal niche response, suggesting it may also respond to other pharmacological neurogenic stimuli. A better understanding of the neurogenic stimuli modulation for meninges may be useful to improve the effectiveness of neurodegenerative and neuropsychiatric treatments.


Asunto(s)
Microambiente Celular , Ambiente , Glicoproteínas de Membrana/metabolismo , Meninges/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Técnica del Anticuerpo Fluorescente , Fluoxetina/farmacología , Meninges/efectos de los fármacos , Meninges/patología , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo
3.
Glia ; 63(12): 2152-67, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26123132

RESUMEN

Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Ependimogliales/fisiología , Oligodendroglía/fisiología , Células Madre Pluripotentes/fisiología , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Trasplante de Células , Células Madre Embrionarias/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Glicoproteínas/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , Inmunohistoquímica , Ratones Noqueados , Ratones Mutantes , Proteínas Nucleares , Péptidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción , Tretinoina/metabolismo
4.
Brain Res ; 1742: 146803, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32240655

RESUMEN

Rodent models have catalyzed major discoveries in the neocortex, a brain region unique to mammals. However, since the neocortex has expanded considerably in primates, employing rodent models has limitations. Human fetal brain tissue is a scarce resource with limitations for experimental manipulations. In order to create an experimentally tractable representation of human brain development, a number of labs have recently created in vitro models of the developing human brain. These models, generated using human embryonic stem cells or induced pluripotent stem cells, are called "organoids". Organoids have successfully and rapidly uncovered new mechanisms of human brain development in health and disease. In the future, we envision that this strategy will enable faster and more efficient translation of basic neuroscience findings to therapeutic applications. In this review, we discuss the generation of the first human cerebral organoids, progress since their debut, and challenges to be overcome in the future.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neocórtex/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Humanos , Células Madre Pluripotentes Inducidas , Modelos Biológicos , Neocórtex/fisiología , Neurogénesis , Organoides/fisiología
5.
Cell Stem Cell ; 19(6): 690-702, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912090

RESUMEN

The re-emergence of Zika virus (ZIKV) and its suspected link with various disorders in newborns and adults led the World Health Organization to declare a global health emergency. In response, the stem cell field quickly established platforms for modeling ZIKV exposure using human pluripotent stem cell-derived neural progenitors and brain organoids, fetal tissues, and animal models. These efforts provided significant insight into cellular targets, pathogenesis, and underlying biological mechanisms of ZIKV infection as well as platforms for drug testing. Here we review the remarkable progress in stem cell-based ZIKV research and discuss current challenges and future opportunities.


Asunto(s)
Modelos Biológicos , Investigación con Células Madre , Células Madre/metabolismo , Virus Zika/fisiología , Animales , Humanos , Sistema Nervioso/patología , Sistema Nervioso/virología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/genética , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA