Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharm ; 19(8): 2776-2794, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834797

RESUMEN

For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO4 (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 µg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 µg/mL). The two PTX compounds showed similar cancer cell-killing performances in vitro when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an in vivo human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Paclitaxel/química , Polietilenglicoles/química , Agua , Rayos X
2.
J Radiol Prot ; 41(3)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34426564

RESUMEN

The hazards associated with radium-containing materials were largely unknown when they were first introduced into household and other products over a century ago. Radium was also originally thought to have beneficial health properties, leading to confusion amongst the public about the safety of radium in household products and food items. When the adverse health effects associated with radium were discovered and became well known, radium products became unpopular and were prohibited in some countries. In the United States, after the hazards associated with radium became known, radium was first regulated by individual states in the late 1920s and early 1930s. Later, the US Nuclear Regulatory Commission (NRC) was given a role in the regulation of discrete sources of radium with the passage of the Energy Policy Act of 2005. After passage of the Act, the NRC began to systematically identify sites around the country where radium was used and reached out to site owners to determine whether existing radium contamination could pose a risk to public health and safety and the environment. The NRC devised a graded approach in response to its new regulatory responsibilities to address potential public health and safety issues at legacy radium sites. By September 2019, the NRC had dispositioned all the sites that were identified as having potential contamination from historical radium within its regulatory purview in non-Agreement States. The staff worked with site owners and federal, state and local officials, as needed, to properly disposition the sites to ensure that each site either meets the applicable criteria for unrestricted use or has controls in place to limit access during remediation so that no site poses an unacceptable risk to public health and safety and the environment.


Asunto(s)
Radio (Elemento) , Radio (Elemento)/análisis , Estados Unidos
3.
Med Phys ; 50(1): 142-151, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36183146

RESUMEN

BACKGROUND: Eye plaque brachytherapy is currently an optimal therapy for intraocular cancers. Due to the lack of an effective and practical technique to measure the seed radioactivity distribution, current quality assurance (QA) practice according to the American Association of Physicists in Medicine TG129 only stipulates that the plaque assembly be visually inspected. Consequently, uniform seed activity is routinely adopted to avoid possible loading mistakes of differential seed loading. However, modulated dose delivery, which represents a general trend in radiotherapy to provide more personalized treatment for a given tumor and patient, requires differential activities in the loaded seeds. PURPOSE: In this study, a fast and low-cost radio-luminescent imaging and dose calculating system to verify the seed activity distribution for differential loading was developed. METHODS: A proof-of-concept system consisting of a thin scintillator sheet coupled to a camera/lens system was constructed. A seed-loaded plaque can be placed directly on the scintillator surface with the radioactive seeds facing the scintillator. The camera system collects the radioluminescent signal generated by the scintillator on its opposite side. The predicted dose distribution in the scintillator's sensitive layer was calculated using a Monte Carlo simulation with the planned plaque loading pattern of I-125 seeds. Quantitative comparisons of the distribution of relative measured signal intensity and that of the relative predicted dose in the sensitive layer were performed by gamma analysis, similar to intensity-modulated radiation therapy QA. RESULTS: Data analyses showed high gamma (3%/0.3 mm, global, 20% threshold) passing rates for correct seed loadings and low passing rates with distinguished high gamma value area for incorrect loadings, indicating that possible errors may be detected. The measurement and analysis only required a few extra minutes, significantly shorter than the time to assay the extra verification seeds the physicist already must perform as recommended by TG129. CONCLUSIONS: Radio-luminescent QA can be used to facilitate and assure the implementation of intensity-modulated, customized plaque loading.


Asunto(s)
Braquiterapia , Neoplasias del Ojo , Humanos , Radioisótopos de Yodo/uso terapéutico , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Braquiterapia/métodos , Método de Montecarlo , Neoplasias del Ojo/radioterapia , Radiometría/métodos
4.
ACS Biomater Sci Eng ; 8(9): 3644-3658, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36000986

RESUMEN

Radiotherapy (RT) is the primary standard of care for many locally advanced cancers. Often times, however, the efficacy of RT is limited due to radio-resistance that cancer cells develop. Photodynamic therapy (PDT) has gained importance as an alternative local therapy. Because its mechanism involves minimal acquired resistance, PDT is a useful adjunct to RT. This review discusses recent advances in combining RT with PDT for cancer treatment. In the first part of this review, we will discuss clinical trials on RT + PDT combination therapies. All these approaches suffer from the same inherent limitations as any current PDT methods; (i) visible light has a short penetration depth in human tissue (<∼10 mm), and (ii) it is difficult to illuminate the entire tumor homogeneously by external/interstitial laser irradiation. To address these limitations, scintillating nanoparticle-mediated RT-PDT approaches have been explored in which nanoparticles convert X-rays (RT) into visible light (PDT); high-energy X-rays can reach deep into the body to irradiate cancers uniformly and precisely. The second part of this review will discuss recent efforts in developing and applying nanoparticles for RT-PDT applications.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Fotoquimioterapia/métodos , Rayos X
5.
J Neural Eng ; 18(4)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33730704

RESUMEN

Objective.Non-invasive light delivery into the brain is needed forin vivooptogenetics to avoid physical damage. An innovative strategy could employ x-ray activation of radioluminescent particles (RLPs) to emit localized light. However, modulation of neuronal or synaptic function by x-ray induced radioluminescence from RLPs has not yet been demonstrated.Approach.Molecular and electrophysiological approaches were used to determine if x-ray dependent radioluminescence emitted from RLPs can activate light sensitive proteins. RLPs composed of cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light, were used as they are biocompatible with neuronal function and synaptic transmission.Main results.We show that 30 min of x-ray exposure at a rate of 0.042 Gy s-1caused no change in the strength of basal glutamatergic transmission during extracellular field recordings in mouse hippocampal slices. Additionally, long-term potentiation, a robust measure of synaptic integrity, was induced after x-ray exposure and expressed at a magnitude not different from control conditions (absence of x-rays). We found that x-ray stimulation of RLPs elevated cAMP levels in HEK293T cells expressing OptoXR, a chimeric opsin receptor that combines the extracellular light-sensitive domain of rhodopsin with an intracellular second messenger signaling cascade. This demonstrates that x-ray radioluminescence from LSO:Ce particles can activate OptoXR. Next, we tested whether x-ray activation of the RLPs can enhance synaptic activity in whole-cell recordings from hippocampal neurons expressing channelrhodopsin-2, both in cell culture and acute hippocampal slices. Importantly, x-ray radioluminescence caused an increase in the frequency of spontaneous excitatory postsynaptic currents in both systems, indicating activation of channelrhodopsin-2 and excitation of neurons.Significance.Together, our results show that x-ray activation of LSO:Ce particles can heighten cellular and synaptic function. The combination of LSO:Ce inorganic scintillators and x-rays is therefore a viable method for optogenetics as an alternative to more invasive light delivery methods.


Asunto(s)
Cerio , Optogenética , Animales , Estudios de Factibilidad , Células HEK293 , Humanos , Ratones , Rayos X
6.
ACS Appl Bio Mater ; 3(8): 4858-4872, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021730

RESUMEN

Photodynamic therapy (PDT) has shown potential as a cancer treatment modality, but its clinical application is limited due to its visible-light activation since visible wavelengths of light cannot penetrate tissues well. Additionally, combination therapies utilizing PDT and radiotherapy have shown clinical promise in several cancers but are limited again by light penetration and the need for selective photosensitization of the treatment area. Herein, we report the development of bilirubin-photodynamic nanoparticles (PEGylated bilirubin-encapsulated CaWO4 nanoparticles or "PEG-BR/CWO NPs"). PEG-BR/CWO NPs are a formulation of PEGylated bilirubin micelles encapsulating CaWO4 nanoparticles. These particles are capable of activating PDT via X-ray irradiation within deep tissues due to the radioluminescence properties of their CaWO4 nanoparticle cores. PEG-BR/CWO NPs facilitate a combination of photodynamic and radiation therapy and represent a previously unexplored application of PEG-bilirubin conjugates as photosensitizing agents. When irradiated by X-rays, PEG-BR/CWO NPs emit UV-A and visible light from their CaWO4 cores, which excites bilirubin and leads to the production of singlet oxygen. PEG-BR/CWO NPs exhibit improvements over X-ray therapy alone in vitro and in murine xenograft models of head and neck cancer. The data presented in this study indicate that PEG-BR/CWO NPs are promising agents for facilitating combined radio-photodynamic therapy in deep tissue tumors.

7.
Artículo en Inglés | MEDLINE | ID: mdl-31551750

RESUMEN

Optogenetics is widely used in neuroscience to control neural circuits. However, non-invasive methods for light delivery in brain are needed to avoid physical damage caused by current methods. One potential strategy could employ x-ray activation of radioluminescent particles (RPLs), enabling localized light generation within the brain. RPLs composed of inorganic scintillators can emit light at various wavelengths depending upon composition. Cerium doped lutetium oxyorthosilicate (LSO:Ce), an inorganic scintillator that emits blue light in response to x-ray or ultraviolet (UV) stimulation, could potentially be used to control neural circuits through activation of channelrhodopsin-2 (ChR2), a light-gated cation channel. Whether inorganic scintillators themselves negatively impact neuronal processes and synaptic function is unknown, and was investigated here using cellular, molecular, and electrophysiological approaches. As proof of principle, we applied UV stimulation to 4 µm LSO:Ce particles during whole-cell recording of CA1 pyramidal cells in acute hippocampal slices from mice that expressed ChR2 in glutamatergic neurons. We observed an increase in frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), indicating activation of ChR2 and excitation of neurons. Importantly, LSO:Ce particles did not affect survival of primary mouse cortical neurons, even after 24 h of exposure. In extracellular dendritic field potential recordings, no change in the strength of basal glutamatergic transmission was observed during exposure to LSO:Ce microparticles. However, the amplitude of the fiber volley was slightly reduced with high stimulation. Additionally, there was a slight decrease in the frequency of sEPSCs in whole-cell voltage-clamp recordings from CA1 pyramidal cells, with no change in current amplitudes. The amplitude and frequency of spontaneous inhibitory postsynaptic currents were unchanged. Finally, long term potentiation (LTP), a synaptic modification believed to underlie learning and memory and a robust measure of synaptic integrity, was successfully induced, although the magnitude was slightly reduced. Together, these results show LSO:Ce particles are biocompatible even though there are modest effects on baseline synaptic function and long-term synaptic plasticity. Importantly, we show that light emitted from LSO:Ce particles is able to activate ChR2 and modify synaptic function. Therefore, LSO:Ce inorganic scintillators are potentially viable for use as a new light delivery system for optogenetics.

8.
J Control Release ; 303: 237-252, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31026550

RESUMEN

The present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30-40 fractions of 2-3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle ("PEG-PLA/CWO/PTX") formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Compuestos de Calcio/administración & dosificación , Sistemas de Liberación de Medicamentos , Sustancias Luminiscentes/administración & dosificación , Nanopartículas/administración & dosificación , Paclitaxel/administración & dosificación , Polietilenglicoles/administración & dosificación , Compuestos de Tungsteno/administración & dosificación , Animales , Antineoplásicos Fitogénicos/química , Compuestos de Calcio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioradioterapia , Liberación de Fármacos , Femenino , Humanos , Sustancias Luminiscentes/química , Ratones , Nanopartículas/química , Neoplasias/terapia , Paclitaxel/química , Polietilenglicoles/química , Compuestos de Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA