RESUMEN
The constantly expanding group of class II CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated) effectors and their engineered variants exhibit distinct editing modes and efficiency, fidelity, target range, and molecular size. Their enormous diversity of capabilities provides a formidable toolkit for a large array of technologies. We review the structural and biochemical mechanisms of versatile effector proteins from class II CRISPR-Cas systems to provide mechanistic insights into their target specificity, protospacer adjacent motif (PAM) restriction, and activity regulation, and discuss possible strategies to enhance genome-engineering tools in terms of accuracy, efficiency, applicability, and controllability.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genéticaRESUMEN
Directed evolution of natural AAV9 using peptide display libraries have been widely used in the search for an optimal recombinant AAV (rAAV) for transgene delivery across the blood-brain barrier (BBB) to the CNS following intravenous ( IV) injection. In this study, we used a different approach by creating a shuffled rAAV capsid library based on parental AAV serotypes 1 through 12. Following selection in mice, 3 novel variants closely related to AAV1, AAV-BBB6, AAV-BBB28, and AAV-BBB31, emerged as top candidates. In direct comparisons with AAV9, our novel variants demonstrated an over 270-fold improvement in CNS transduction and exhibited a clear bias toward neuronal cells. Intriguingly, our AAV-BBB variants relied on the LY6A cellular receptor for CNS entry, similar to AAV9 peptide variants AAV-PHP.eB and AAV.CAP-B10, despite the different bioengineering methods used and parental backgrounds. The variants also showed reduced transduction of both mouse liver and human primary hepatocytes in vivo. To increase clinical translatability, we enhanced the immune escape properties of our new variants by introducing additional modifications based on rational design. Overall, our study highlights the potential of AAV1-like vectors for efficient CNS transduction with reduced liver tropism, offering promising prospects for CNS gene therapies.
Asunto(s)
Barrera Hematoencefálica , Terapia Genética , Humanos , Animales , Ratones , Terapia Genética/métodos , Cápside , Hígado , Péptidos/genética , Dependovirus , Vectores Genéticos/genética , Transducción GenéticaRESUMEN
The development of carbon capture and storage technologies has resulted in a rising interest in the use of carbonic anhydrases (CAs) for CO2 fixation at elevated temperatures. In this study, we chose to rationally engineer the α-CA (NtCA) from the thermophilic bacterium Nitratiruptor tergarcus, which has been previously suggested to be thermostable by in silico studies. Using a combination of analyses with the DEEPDDG software and available structural knowledge, we selected residues in three regions, namely, the catalytic pocket, the dimeric interface and the surface, in order to increase thermostability and CO2 hydration activity. A total of 13 specific mutations, affecting seven amino acids, were assessed. Single, double and quadruple mutants were produced in Escherichia coli and analyzed. The best-performing mutations that led to improvements in both activity and stability were D168K, a surface mutation, and R210L, a mutation in the dimeric interface. Apart from these, most mutants showed improved thermostability, with mutants R210K and N88K_R210L showing substantial improvements in activity, up to 11-fold. Molecular dynamics simulations, focusing particularly on residue fluctuations, conformational changes and hydrogen bond analysis, elucidated the structural changes imposed by the mutations. Successful engineering of NtCA provided valuable lessons for further engineering of α-CAs.
Asunto(s)
Anhidrasas Carbónicas , Estabilidad de Enzimas , Simulación de Dinámica Molecular , Ingeniería de Proteínas , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Ingeniería de Proteínas/métodos , Mutación , Temperatura , Dominio Catalítico , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismoRESUMEN
Cyanogenic glucosides are important defense molecules in plants with useful biological activities in animals. Their last biosynthetic step consists of a glycosylation reaction that confers stability and increases structural diversity and is catalyzed by the UDP-dependent glycosyltransferases (UGTs) of glycosyltransferase family 1. These versatile enzymes have large and varied substrate scopes, and the structure-function relationships controlling scope and specificity remain poorly understood. Here, we report substrate-bound crystal structures and rational engineering of substrate and stereo-specificities of UGT85B1 from Sorghum bicolor involved in biosynthesis of the cyanogenic glucoside dhurrin. Substrate specificity was shifted from the natural substrate (S)-p-hydroxymandelonitrile to (S)-mandelonitrile by combining a mutation to abolish hydrogen bonding to the p-hydroxyl group with a mutation to provide steric hindrance at the p-hydroxyl group binding site (V132A/Q225W). Further, stereo-specificity was shifted from (S) to (R) by substituting four rationally chosen residues within 6 Å of the nitrile group (M312T/A313T/H408F/G409A). These activities were compared to two other UGTs involved in the biosynthesis of aromatic cyanogenic glucosides in Prunus dulcis (almond) and Eucalyptus cladocalyx. Together, these studies enabled us to pinpoint factors that drive substrate and stereo-specificities in the cyanogenic glucoside biosynthetic UGTs. The structure-guided engineering of the functional properties of UGT85B1 enhances our understanding of the evolution of UGTs involved in the biosynthesis of cyanogenic glucosides and will enable future engineering efforts towards new biotechnological applications.
Asunto(s)
Aminoácidos , Nitrilos , Animales , Glucósidos/metabolismo , Glicósidos , Glicosiltransferasas , Nitrilos/metabolismo , Uridina DifosfatoRESUMEN
Many resistance genes deployed against pathogens in crops are intracellular nucleotide-binding (NB) leucine-rich repeat (LRR) receptors (NLRs). The ability to rationally engineer the specificity of NLRs will be crucial in the response to newly emerging crop diseases. Successful attempts to modify NLR recognition have been limited to untargeted approaches or depended on previously available structural information or knowledge of pathogen-effector targets. However, this information is not available for most NLR-effector pairs. Here, we demonstrate the precise prediction and subsequent transfer of residues involved in effector recognition between two closely related NLRs without their experimentally determined structure or detailed knowledge about their pathogen effector targets. By combining phylogenetics, allele diversity analysis, and structural modeling, we successfully predicted residues mediating interaction of Sr50 with its cognate effector AvrSr50 and transferred recognition specificity of Sr50 to the closely related NLR Sr33. We created synthetic versions of Sr33 that contain amino acids from Sr50, including Sr33syn, which gained the ability to recognize AvrSr50 with 12 amino-acid substitutions. Furthermore, we discovered that sites in the LRR domain needed to transfer recognition specificity to Sr33 also influence autoactivity in Sr50. Structural modeling suggests these residues interact with a part of the NB-ARC domain, which we named the NB-ARC latch, to possibly maintain the inactive state of the receptor. Our approach demonstrates rational modifications of NLRs, which could be useful to enhance existing elite crop germplasm. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Proteínas de Plantas , Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , Dominios Proteicos , Filogenia , Receptores Inmunológicos/genética , Enfermedades de las Plantas , Inmunidad de la PlantaRESUMEN
Progress in technology and algorithms throughout the past decade has transformed the field of protein design and engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze the effects of mutations for a variety of properties, comprising ligand binding, protein-protein and protein-nucleic acid interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools face and provide our perspectives on the further development of readily applicable methods to guide protein engineering efforts.
Asunto(s)
Biología Computacional , Mutación , Ingeniería de Proteínas , Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismoRESUMEN
Enantio-pure α-hydroxy amides are valuable intermediates for the synthesis of chiral pharmaceuticals. The asymmetric reduction of α-keto amides to generate chiral α-hydroxy amides is a difficult and challenging task in biocatalysis. In this study, iolS, an aldo-keto reductase from Bacillus subtilis 168 was exhibited as a potential biocatalyst, which could catalyze the reduction of diaryl α-keto amide such as 2-oxo-N, 2-diphenyl-acetamide (ONDPA) with moderate S-selectivity (76.1%, ee) and 60.5% conversion. Through semi-rational engineering, two stereocomplementary variants (I57F/F126L and N21A/F126A) were obtained with ee value of 97.6% (S) and 99.9% (R) toward ONDPA (1a), respectively, delivering chiral α-hydroxy amide with > 98% conversions. Moreover, the excellent S- and R-preference variants displayed improved stereoselectivities toward the other α-keto amide compounds. Molecular dynamic and docking analysis revealed that the two key residues at 21 and 126 were identified as the "switch", which specifically controlled the stereopreference of iolS by regulating the shape of substrate binding pocket as well as the substrate orientation. Our results offer an effective strategy to obtain α-hydroxy amides with high optical purity and provide structural insights into altering the stereoselectivity of AKRs.
Asunto(s)
Aldehído Reductasa , Amidas , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/química , Aldo-Ceto Reductasas/metabolismo , Especificidad por Sustrato , Biocatálisis , Catálisis , Aldehído Reductasa/metabolismoRESUMEN
Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.
Asunto(s)
Lacasa , Metaloproteínas , Lacasa/genética , Sitios de Unión , Ingeniería , IndustriasRESUMEN
Consolidated bioprocessing (CBP) remains an attractive option for the production of commodity products from pretreated lignocellulose if a process-suitable organism can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second-generation (2G) bioethanol. A promising strategy for heterologous cellulase production in yeast entails displaying enzymes on the cell surface by means of glycosylphosphatidylinositol (GPI) anchors. While strains producing a core set of cell-adhered cellulases that enabled crystalline cellulose hydrolysis have been created, secreted levels of enzyme were insufficient for complete cellulose hydrolysis. In fact, all reported recombinant yeast CBP candidates must overcome the drawback of generally low secretion titers. Rational strain engineering can be applied to enhance the secretion phenotype. This study aimed to improve the amount of cell-adhered cellulase activities of recombinant S. cerevisiae strains expressing a core set of four cellulases, through overexpression of genes that were previously shown to enhance cellulase secretion. Results showed significant increases in cellulolytic activity for all cell-adhered cellulase enzyme types. Cell-adhered cellobiohydrolase activity was improved by up to 101%, ß-glucosidase activity by up to 99%, and endoglucanase activity by up to 231%. Improved hydrolysis of crystalline cellulose of up to 186% and improved ethanol yields from this substrate of 40-50% in different strain backgrounds were also observed. In addition, improvement in resistance to fermentation stressors was noted in some strains. These strains represent a step towards more efficient organisms for use in 2G biofuel production. KEY POINTS: ⢠Cell-surface-adhered cellulase activity was improved in strains engineered for CBP. ⢠Levels of improvement of activity were strain and enzyme dependent. ⢠Crystalline cellulose conversion to ethanol could be improved up to 50%.
Asunto(s)
Celulasa , Celulasas , Celulasa/genética , Celulasa/metabolismo , Celulasas/metabolismo , Celulosa/metabolismo , Etanol/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismoRESUMEN
Prenyl pyrophosphate methyltransferases enhance the structural diversity of terpenoids. However, the molecular basis of their catalytic mechanisms is poorly understood. In this study, using multiple strategies, we characterized a geranyl pyrophosphate (GPP) C6-methyltransferase, BezA. Biochemical analysis revealed that BezA requires Mg2+ and solely methylates GPP. The crystal structures of BezA and its complex with S-adenosyl homocysteine were solved at 2.10 and 2.56â Å, respectively. Further analyses using site-directed mutagenesis, molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations revealed the molecular basis of the methylation reaction. Importantly, the function of E170 as a catalytic base to complete the methylation reaction was established. We also succeeded in switching the substrate specificity by introducing a W210A substitution, resulting in an unprecedented farnesyl pyrophosphate C6-methyltransferase.
Asunto(s)
Metiltransferasas/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos/metabolismo , Biocatálisis , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Metiltransferasas/química , Metiltransferasas/genética , Modelos Moleculares , Estructura Molecular , Fosfatos de Poliisoprenilo/química , Sesquiterpenos/química , Streptomyces/enzimología , Especificidad por SustratoRESUMEN
Many metabolic pathways in bacteria are regulated by metabolite sensing riboswitches that exert their control at the level of transcription employing a termination-antitermination mechanism. These riboswitches represent engineering targets to modulate expression of genes and operons relevant for the biotechnological production of commercially relevant compounds. We show that removal of the transcriptional riboswitches that control purine biosynthesis and riboflavin biosynthesis in Bacillus subtilis leads to auxotrophic strains. As an alternative, we report a rational approach for engineering transcriptional riboswitches independently from the availability of structural data. This approach consists in the identification and deletion of a key nucleotide sequence exclusively involved in transcription termination without affecting formation of other secondary and tertiary structures, which can be involved in other functions. To demonstrate the efficacy of our approach, we tested it with regard to deregulation of the purine and the riboflavin biosynthetic pathways in B. subtilis. Following validation of the engineered transcriptional riboswitches using specialized reporter strains, our approach was implemented into a B. subtilis wild-type strain employing CRISPR-Cas9 genome editing. The resulting purine and riboflavin production strains were characterized at the level of gene expression, metabolite synthesis and growth, and a substantial enhancement was measured at each level. Moreover, applying our approach to deregulate the purine pathway of an industrial riboflavin overproducing strain with impaired growth led to an increase in biomass by 53%, which resulted in an enhanced total production of riboflavin in the culture.
Asunto(s)
Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética , Purinas/biosíntesis , ARN Bacteriano , Riboflavina/biosíntesis , Riboswitch , Transcripción Genética , Bacillus subtilis/genética , ARN Bacteriano/biosíntesis , ARN Bacteriano/genéticaRESUMEN
Biomanufacturing of chemicals using biocatalysts is an attractive strategy for the production of valuable pharmaceuticals since it is usually more economical and has a much-reduced environmental impact. However, there are often challenges such as their thermal instability that should be overcome before a newly discovered enzyme is eventually translated into industrial processes. In this work, we describe a roadmap for the development of a robust catalyst for industrial resolution of Vince lactam, a key intermediate for the synthesis of carbocyclic-nucleoside-related pharmaceuticals. By a genome mining strategy, a new (+)-γ-lactamase (MiteL) from Microbacterium testaceum was successfully discovered and biochemically characterized. In vitro studies showed that the enzyme exhibited high activity but poor enantioselectivity (E = 6.3 ± 0.2) toward racemic Vince lactam, and thus, it is not suitable for industrial applications. Based on structural modeling and docking studies, a semi-rational engineering strategy combined with an efficient screening method was then applied to improve the enantioselectivity of MiteL. Several mutants with significant shifting stereoselectivity toward (-)-γ-lactam were obtained by site-saturation mutagenesis. Synergy effects led to the final mutant F14D/Q114R/M117L, which enabled efficient acquisition of (-)-γ-lactam with a high E value (> 200). The mutant was biochemically characterized, and the docking studies suggested a plausible mechanism for its improved selectivity. Finally, a sunflower-like nanoreactor was successfully constructed to improve the mutant's robustness via protein supramolecular self-assembly. Thus, the synergism between semi-rational protein engineering and self-assembling immobilization enabled construction of a nanoreactor with superior properties, which can be used for resolution of Vince lactam in large scale.
Asunto(s)
Actinobacteria/genética , Amidohidrolasas/metabolismo , Genoma , Lactamas/metabolismo , Ingeniería de Proteínas/métodos , Actinobacteria/enzimología , Biocatálisis , Microbacterium , EstereoisomerismoRESUMEN
We present a random rational approach enabling the construction of overproducing strains in two steps. The approach first involves creating a library of clusters of interest, in which native promoters are substituted with randomly generated constitutive synthetic promoters, and then expressing this library in an appropriate host strain. This strategy is fast, easy to use, accounts for the architecture of a cluster and completely decouples the expression of a gene cluster from complex native regulatory networks. The strategy was applied to improve the production of a macrocyclic peptide, bottromycin, which possesses antibacterial activity against multidrug-resistant bacteria and is a blueprint for a new class of antibacterials. We successfully optimized the expression of genes in operons and created several variants of the bottromycin gene cluster that provide 5-50 fold higher titres of bottromycin than the natural one, thus resulting in the identification of several new bottromycin derivatives not previously described. Moreover, due to the higher bottromycin yield, bottromycin derivatization was performed via the biosynthetic engineering of the gene cluster. The abovementioned features make this generic strategy a promising tool for the overproduction of known secondary metabolites and the activation of silent secondary metabolites in Actinobacteria.
Asunto(s)
Acinetobacter , Genes Bacterianos , Familia de Multigenes , Operón , Transcripción Genética , Acinetobacter/genética , Acinetobacter/metabolismo , Ingeniería Metabólica , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/genéticaRESUMEN
In vitro evolution of enzymes represents a powerful device to evolve new or to improve weak enzymatic functions. In the present work a semi-rational engineering approach has been used to design an efficient and thermostable organophosphate hydrolase, starting from a lactonase scaffold (SsoPox from Sulfolobus solfataricus). In particular, by in vitro evolution of the SsoPox ancillary promiscuous activity, the triple mutant C258L/I261F/W263A has been obtained which, retaining its inherent stability, showed an enhancement of its hydrolytic activity on paraoxon up to 300-fold, achieving absolute values of catalytic efficiency up to 10(5) M(-1) s(-1). The kinetics and structural determinants of this enhanced activity were thoroughly investigated and, in order to evaluate its potential biotechnological applications, the mutant was tested in formulations of different solvents (methanol or ethanol) or detergents (SDS or a commercial soap) for the cleaning of pesticide-contaminated surfaces.
Asunto(s)
Descontaminación/métodos , Plaguicidas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Biotransformación , Evolución Molecular Dirigida , Hidrólisis , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Conformación Proteica , Sulfolobus solfataricus/genéticaRESUMEN
Amylosucrase from Neisseria polysaccharea is a remarkable transglucosylase that synthesizes an insoluble amylose-like polymer from sole substrate sucrose. One particular amino acid, Arg226, was proposed from molecular modeling studies to play an important role in the formation of the active site topology and in the accessibility of ligands to the catalytic site. The systematic mutation of this Arg residue by all 19 other possible amino acids revealed that all single-mutants had a higher activity on sucrose compared to the wild-type enzyme. An extensive kinetic investigation showed that catalytic efficiencies are greatly impacted by the presence of natural acceptors in the reaction media, their chain length and the nature of the amino acid at position 226. Compared to the wild-type enzyme, the R226N mutant showed a 10-fold enhancement in the catalytic efficiency and a nearly twofold higher production of an insoluble amylose-like polymer that can be of interest for biotechnological applications.
Asunto(s)
Aminoácidos/metabolismo , Glucosiltransferasas/metabolismo , Neisseria/enzimología , Oligosacáridos/metabolismo , Sustitución de Aminoácidos , Aminoácidos/genética , Dominio Catalítico , Análisis Mutacional de ADN , Glucosiltransferasas/química , Glucosiltransferasas/genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neisseria/genética , Conformación Proteica , Sacarosa/metabolismoRESUMEN
Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.
Asunto(s)
Técnicas Biosensibles , Límite de Detección , Ácido Salicílico , Teléfono Inteligente , Técnicas Biosensibles/instrumentación , Ácido Salicílico/análisis , Ácido Salicílico/química , Diseño de Equipo , Humanos , Hidrogeles/química , Cosméticos/química , Cosméticos/análisisRESUMEN
Phytate, also known as myoinositol hexakisphosphate, exhibits anti-nutritional properties and possesses a negative environmental impact. Phytase enzymes break down phytate, showing potential in various industries, necessitating thorough biochemical and computational characterizations. The present study focuses on Obesumbacterium proteus phytase (OPP), indicating its similarities with known phytases and its potential through computational analyses. Structure, functional, and docking results shed light on OPP's features, structural stability, strong and stable interaction, and dynamic conformation, with flexible sidechains that could adapt to different temperatures or specific functions. Root Mean Square fluctuation (RMSF) highlighted fluctuating regions in OPP, indicating potential sites for stability enhancement through mutagenesis. The systematic approach developed here could aid in enhancing enzyme properties via a rational engineering approach. Computational analysis expedites enzyme discovery and engineering, complementing the traditional biochemical methods to accelerate the quest for superior enzymes for industrial applications.
RESUMEN
Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.
Asunto(s)
Glicosiltransferasas , Edulcorantes , Glicosiltransferasas/genética , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Cucurbitaceae/química , Cucurbitaceae/enzimología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Biocatálisis , Dominio Catalítico , Ingeniería de Proteínas , Especificidad por Sustrato , CinéticaRESUMEN
ω-Transaminase (ω-TA) is a promising biocatalyst for the synthesis of chiral amines. In this study, a ω-TA derived from Vitreoscilla stercoraria DSM 513 (VsTA) was heterologous expressed in recombinant E. coli cells and applied to reduce 4'-(trifluoromethyl)acetophenone (TAP) to (S)-1-[4-(trifluoromethyl)phenyl]ethylamine ((S)-TPE), a pharmaceutical intermediate of chiral amine. Aimed to a more efficient synthesis of (S)-TPE, VsTA was further engineered via a semi-rational strategy. Compared to wild-type VsTA, the obtained R411A variant exhibited 2.39 times higher activity towards TAP and enhanced catalytic activities towards other prochiral aromatic ketones. Additionally, better thermal stability for R411A variant was observed with 25.4% and 16.3% increase in half-life at 30 °C and 40 °C, respectively. Structure-guided analysis revealed that the activity improvement of R411A variant was attributed to the introduction of residue A411, which is responsible for the increase in the hydrophobicity of substrate tunnel and the alleviation of steric hindrance, thereby facilitating the accessibility of hydrophobic substrate TAP to the active center of VsTA. This study provides an efficient strategy for the engineering of ω-TA based on semi-rational approach and has the potential for the molecular modification of other biocatalysts.
RESUMEN
Introduction: NADH pyrophosphatase, a hydrolase catalyzing the phosphate bond of NADH to reduced nicotinamide mononucleotide, has potential applications in the food, cosmetic and pharmaceutical industry. Methods: Here, we investigated the effects of vector screening, promoter and RBS strategies on NADH pyrophosphatase expression and protein engineering on its enzymatic activity and thermal stability. Results: In this study, we describe a NADH pyrophosphatase derived from Escherichia coli (EcNudc). Strategies focusing on expression regulation including screening vectors, optimizing promoters and ribosome binding sites were utilized to enhance the productivity of EcNudc (1.8 U/mL). Moreover, protein engineering was adopted to further improve the catalytic properties of EcNudc, achieving 3.3-fold higher activity and 3.6-fold greater thermostability at 50°C. Furthermore, fermentation for the combined mutant R148A-H149E (EcNudc-M) production in a 7 L fermenter was implemented and the enzyme activity of EcNudc-M reached 33.0 U/mL. Finally, the EcNudc-M was applied in the catalysis of NADH with the highest NMNH yield of 16.65 g/L. Discussion: In conclusion, we constructed a commercially available genetically engineered strain with high activity and thermal stability of NADH pyrophosphatase, laying a broad foundation for the biocatalytic industrial production of NMNH and expand its application range.