Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35584615

RESUMEN

Transition metal dichalcogenides (TMDCs) are versatile layered materials with potential applications ranging from optoelectronic devices to water splitting. Top-down fabrication methods such as exfoliation are not practical for a large-scale production of high-quality devices: a bottom-up approach such as sputtering, a low-temperature deposition method, is more suitable. However, due to its anisotropic nature, the growth mechanism of molybdenum disulfide (MoS2) via sputtering is complex and remains to be investigated in detail. In this paper, we study the growth of MoS2 films co-deposited by using a sulfur (S) hot-lip cell and a molybdenum (Mo) sputtering target via reactive sputtering. The impact of S partial pressure on the structure and morphology of MoS2films was systematically characterized, and it was observed that the growth is dominated by vertically-oriented sheets with horizontal branches, resulting in a tree-like structure. The growth front of the structures is ascribed to the anisotropic incorporation of adatoms with regards to the orientation of MoS2.

2.
J Synchrotron Radiat ; 28(Pt 5): 1504-1510, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475297

RESUMEN

A prototype in situ X-ray absorption near-edge structure (XANES) system was developed to explore its sensitivity for ultra-thin films of iron-nitride (Fe-N), cobalt-nitride (Co-N) and nickel-nitride (Ni-N). They were grown using DC-magnetron sputtering in the presence of an N2 plasma atmosphere at the experimental station of the soft XAS beamline BL01 (Indus-2, RRCAT, India). XANES measurements were performed at the N K-edge in all three cases. It was found that the N K-edge spectral shape and intensity are greatly affected by increasing thickness and appear to be highly sensitive, especially in low-thickness regions. From a certain thickness of ∼1000 Å, however, samples exhibit a bulk-like behavior. On the basis of the obtained results, different growth stages were identified. Furthermore, the presence of a molecular N2 component in the ultra-thin regime (<100 Å) was also obtained in all three cases studied in this work. In essence, this prototype in situ system reveals that N K-edge XANES is a powerful technique for studying ultra-thin films, and the development of a dedicated in situ system can be effective in probing several phenomena that remain hitherto unexplored in such types of transition metal nitride thin films.

3.
Proc Natl Acad Sci U S A ; 113(46): 12929-12933, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807139

RESUMEN

A degenerate p-type conduction of cuprous iodide (CuI) thin films is achieved at the iodine-rich growth condition, allowing for the record high room-temperature conductivity of ∼156 S/cm for as-deposited CuI and ∼283 S/cm for I-doped CuI. At the same time, the films appear clear and exhibit a high transmission of 60-85% in the visible spectral range. The realization of such simultaneously high conductivity and transparency boosts the figure of merit of a p-type TC: its value jumps from ∼200 to ∼17,000 MΩ-1 Polycrystalline CuI thin films were deposited at room temperature by reactive sputtering. Their electrical and optical properties are examined relative to other p-type transparent conductors. The transport properties of CuI thin films were investigated by temperature-dependent conductivity measurements, which reveal a semiconductor-metal transition depending on the iodine/argon ratio in the sputtering gas.

4.
Sci Technol Adv Mater ; 20(1): 1031-1042, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31723370

RESUMEN

Optically transparent, colorless Al-O-N and Al-Si-O-N coatings with discretely varied O and Si contents were fabricated by reactive direct current magnetron sputtering (R-DCMS) from elemental Al and Si targets and O2 and N2 reactive gases. The Si/Al content was adjusted through the electrical power on the Si and Al targets, while the O/N content was controlled through the O2 flow piped to the substrate in addition to the N2 flow at the targets. The structure and morphology of the coatings were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM), while the elemental composition was obtained from Rutherford backscattering spectrometry (RBS) and heavy ion elastic recoil detection analysis (ERDA). The chemical states of the elements in the coatings were analyzed by X-ray photoelectron spectroscopy (XPS). Based on analytical results, a model describing the microstructural evolution of the Al-O-N and also previously studied Al-Si-N [1, 2, 3, 4] coatings with O and Si content, respectively, is established. The universality of the microstructural evolution of these coatings with the concentration of the added element is attributed to the extra valence electron (e-) that must be incorporated into the AlN wurtzite host lattice. In the case of Al-O-N, this additional valence charge arises from the e - acceptor O replacing N in the AlN wurtzite lattice, while the e - donor Si substituting Al fulfills that role in the Al-Si-N system. In view of future applications of ternary Al-O-N and quaternary Al-Si-O-N transparent protective coatings, their mechanical properties such as residual stress (σ), hardness (HD) and Young's modulus (E) were obtained from the curvature of films deposited onto thin substrates and by nanoindentation, respectively. Moderate compressive stress levels between -0.2 and -0.5 GPa, which suppress crack formation and film-substrate delamination, could be obtained together with HD values around 25 GPa.

5.
Sensors (Basel) ; 18(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487445

RESUMEN

Vanadium pentoxide thin films were deposited onto insulating support by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. X-ray diffraction at glancing incidence (GIXD) and Scanning Electronic Microscopy (SEM) were used for structural and phase characterization. Thickness of the films was determined by the profilometry. It has been confirmed by GIXD that the deposited films are composed of V2O5 phase. The gas sensing properties of V2O5 thin films were investigated at temperatures from range 410⁻617 K upon NO2 gas of 4⁻20 ppm. The investigated material exhibited good response and reversibility towards nitrogen dioxide. The effect of metal-insulator transition (MIT) on sensor performance has been observed and discussed for the first time. It was found that a considerable increase of the sensor sensitivity occured above 545 K, which is related to postulated metal-insulator transition.

6.
Molecules ; 22(9)2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28880225

RESUMEN

This paper reports the synthesis and characterization of silver oxide films for use as bactericidal coatings. Synthesis parameters, dissolution/elution rate, and bactericidal efficacy are reported. Synthesis conditions were developed to create AgO, Ag2O, or mixtures of AgO and Ag2O on surfaces by reactive magnetron sputtering. The coatings demonstrate strong adhesion to many substrate materials and impede the growth of all bacterial strains tested. The coatings are effective in killing Escherichia coli and Staphylococcus aureus, demonstrating a clear zone-of-inhibition against bacteria growing on solid media and the ability to rapidly inhibit bacterial growth in planktonic culture. Additionally, the coatings exhibit very high elution of silver ions under conditions that mimic dynamic fluid flow ranging between 0.003 and 0.07 ppm/min depending on the media conditions. The elution of silver ions from the AgO/Ag2O surfaces was directly impacted by the complexity of the elution media, with a reduction in elution rate when examined in complex cell culture media. Both E. coli and S. aureus were shown to bind ~1 ppm Ag⁺/mL culture. The elution of Ag⁺ resulted in no increases in mammalian cell apoptosis after 24 h exposure compared to control, but apoptotic cells increased to ~35% by 48 and 72 h of exposure. Taken together, the AgO/Ag2O coatings described are effective in eliciting antibacterial activity and have potential for application on a wide variety of surfaces and devices.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Óxidos/química , Óxidos/farmacología , Compuestos de Plata/química , Compuestos de Plata/farmacología , Plata/química , Células 3T3 , Animales , Supervivencia Celular , Escherichia coli/efectos de los fármacos , Humanos , Iones/química , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
7.
Surf Coat Technol ; 244(100): 52-56, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24748705

RESUMEN

The influence of reactive and non-reactive sputtering on structure, mechanical properties, and thermal stability of Zr1 - xAlxN thin films during annealing to 1500 °C is investigated in detail. Reactive sputtering of a Zr0.6Al0.4 target leads to the formation of Zr0.66Al0.34N thin films, mainly composed of supersaturated cubic (c) Zr1 - xAlxN with small fractions of (semi-)coherent wurtzite (w) AlN domains. Upon annealing, the formation of cubic Zr-rich domains and growth of the (semi-)coherent w-AlN domains indicate spinodal-like decomposition. Loss of coherency can only be observed for annealing temperatures above 1150 °C. Following these decomposition processes, the hardness remains at the as-deposited value of ~ 29 GPa with annealing up to 1100 °C. Using a ceramic (ZrN)0.6(AlN)0.4 target and sputtering in Ar atmosphere allows preparing c-Zr0.68Al0.32N coatings with a well-defined crystalline single-phase cubic structure combined with higher hardnesses of ~ 31 GPa. Due to the absence of (semi-)coherent w-AlN domains in the as-deposited state, which could act as nucleation sites, the decomposition process of c-Zr1 - xAlxN is retarded. Only after annealing at 1270 °C, the formation of incoherent w-AlN can be detected. Hence, their hardness remains very high with ~ 33 GPa even after annealing at 1200 °C. The study highlights the importance of controlling the deposition process to prepare well-defined coatings with high mechanical properties and thermal stability.

8.
Adv Healthc Mater ; 13(24): e2302400, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38758352

RESUMEN

Platinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtOx is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrOx and poly(3,4-ethylenedioxythiophene), PEDOT. Unlike these two well-known analogs, however, it is found that PtOx capacitance is not caused by reversible pseudofaradaic reactions but rather due to high surface area. In contrast to IrOx, PtOx is not a reversible valence-change oxide, but rather a porous form of platinum. The findings show that this oxygen-containing form of Pt can place Pt electrodes on a level competitive with IrOx and PEDOT. Due to its relatively low cost and ease of preparation, PtOx can be a good choice for microfabricated bioelectronic devices.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Capacidad Eléctrica , Electrodos , Platino (Metal) , Platino (Metal)/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química , Porosidad , Propiedades de Superficie
9.
Mater Today Bio ; 29: 101256, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39381265

RESUMEN

The incorporation of growth factors and biomaterials is a promising strategy for improving osseointegration. However, current strategies to develop biomaterials with exogenous growth factors present disadvantages like inefficiency, difficult deployment, and potential off-target activation, making their translation into clinical practice challenging. This study reveals a bioactive N-doped tantalum carbide (TaC) solid solution film that can be used to construct a TaCN film via bionic interface engineering to recruit host bone growth factors to the wounded site and improve bone regeneration. X-ray photoelectron spectroscopy (XPS) and protein absorption analysis reveal that the performance of TaCN is related to the surface chemical bonds of films. The introduction of N to TaC causes a cascade effect wherein negative charges enrich on the TaCN surface, and the recruitment of positively charged bone growth factors around the TaCN film is facilitated. Under these circumstances, the endogenous bone growth factors enhance bone healing. The TaCN film shows an outstanding performance for in vivo osteogenic differentiation along with a superior in vitro cytocompatibility. Incorporation of N atoms into TaC provides a new clinically translatable strategy to mobilize host bone growth factors for in situ bone regeneration without the need for incorporation of exogenous growth factors.

10.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38334523

RESUMEN

Iron oxide nanomaterials are promising candidates for various electrochemical applications. However, under operating conditions high electric resistance is still limiting performance and lifetime. By incorporating the electronically conductive carbon into a nanohybrid, performance may be increased and degeneration due to delamination may be prevented, eliminating major drawbacks. For future applications, performance is an important key, but also cost-effective manufacturing suitable for scale-up must be developed. A possible approach that shows good potential for up-scale is magnetron sputtering. In this study, a systematic investigation of iron oxides produced by RF magnetron sputtering was carried out, with a focus on establishing correlations between process parameters and resulting structural properties. It was observed that increasing the process pressure was favourable with regard to porosity. Over the entire pressure range investigated, the product consisted of low-crystalline Fe3O4, as well as Fe2O3 as a minor phase. During sputtering, a high degree of graphitisation of carbon was achieved, allowing for sufficient electronic conductivity. By means of a new alternating magnetron sputtering process, highly homogeneous salt-and-pepper-type arrangements of both nanodomains, iron oxide and carbon were achieved. This nano-containment of the redox-active species in a highly conductive carbon domain improves the material's overall conductivity, while simultaneously increasing the electrochemical stability by 44%, as confirmed by cyclic voltammetry.

11.
Materials (Basel) ; 17(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473473

RESUMEN

Thin films of mixed MoO3 and WO3 were obtained using reactive magnetron sputtering onto ITO-covered glass, and the optimal composition was determined for the best electrochromic (EC) properties. A combinatorial material synthesis approach was applied throughout the deposition experiments, and the samples represented the full composition range of the binary MoO3/WO3 system. The electrochromic characteristics of the mixed oxide films were determined with simultaneous measurement of layer transmittance and applied electric current through the using organic propylene carbonate electrolyte cells in a conventional three-electrode configuration. Coloration efficiency data evaluated from the primary data plotted against the composition displayed a characteristic maximum at around 60% MoO3. Our combinatorial approach allows the localization of the maximum at 5% accuracy.

12.
ACS Appl Mater Interfaces ; 16(38): 51097-51108, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264035

RESUMEN

The swift evolution of contemporary electronics products, such as flexible screens and wearable electronic devices, highlights the significance of flexible protective coatings, which combine superior mechanical and optical properties. Even though the recently developed polymer protective coatings can satisfy requirements for flexibility and transparency, their intrinsic nature often results in a hardness below 1 GPa, rendering them susceptible to scratches. On the other hand, traditional inorganic coatings, known for their high hardness and transparency, fall short of meeting flexibility requirements. In the present study, a SiNx/BN periodical nanolayered coatings (PNCs) structure has been tailored to achieve high mechanical durability, transparency, and flexibility. In SiNx/BN PNCs, the optical and mechanical properties of the single-layer SiNx film are crucial to the overall performance of the PNCs. Therefore, pulse direct current (DC) magnetron sputtering was optimized first to enhance the ionization efficiency of Si and N, thereby promoting their reaction and diminishing the presence of elemental silicon in SiNx. The effects of the pulse frequency and duty cycle on SiNx were evaluated. Additionally, the influence of the thickness ratio and modulation periods on the overall performance of the SiNx/BN PNCs was investigated. As a result, a SiNx/BN coating with sapphire-grade hardness, almost no optical absorption in the visible-near-infrared (vis-NIR) range, high wear resistance, and exceptional flexibility was demonstrated.

13.
ACS Appl Mater Interfaces ; 16(13): 16580-16588, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529895

RESUMEN

Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.

14.
Adv Mater ; 36(26): e2312704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615260

RESUMEN

Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability. Polyethylenimine (PEI) is chosen as the interface reactant that can react with sputtered ITO nanoparticles, so that, coordination compounds can be formed during the deposition process, facilitating the carrier transport at the interface of C60/PEI/ITO. Besides, the impact force of energetic ITO particles is greatly alleviated, and the intactness of the underlying C60 layer and perovskite layer is guaranteed. Thus, the prepared semitransparent subcells achieve a significantly enhanced power conversion efficiency (PCE) of 19.17%, surpassing those based on C60/ITO (11.64%). Moreover, the PEI-based devices demonstrate excellent storage stability, which maintains 98% of their original PCEs after 2000 h. On the strength of the interface reactive sputtering ITO electrode, a stacked all-perovskite TSC with a PCE of 26.89% and a monolithic perovskite-organic TSC with a PCE of 24.33% are successfully fabricated.

15.
Materials (Basel) ; 16(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37374387

RESUMEN

We determined the optimal composition of reactive magnetron-sputtered mixed layers of Titanium oxide and Tin oxide (TiO2-SnO2) for electrochromic purposes. We determined and mapped the composition and optical parameters using Spectroscopic Ellipsometry (SE). Ti and Sn targets were put separately from each other, and the Si-wafers on a glass substrate (30 cm × 30 cm) were moved under the two separated targets (Ti and Sn) in a reactive Argon-Oxygen (Ar-O2) gas mixture. Different optical models, such as the Bruggeman Effective Medium Approximation (BEMA) or the 2-Tauc-Lorentz multiple oscillator model (2T-L), were used to obtain the thickness and composition maps of the sample. Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS) has been used to check the SE results. The performance of diverse optical models has been compared. We show that in the case of molecular-level mixed layers, 2T-L is better than EMA. The electrochromic effectiveness (the change of light absorption for the same electric charge) of mixed metal oxides (TiO2-SnO2) that are deposited by reactive sputtering has been mapped too.

16.
Materials (Basel) ; 16(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837316

RESUMEN

In this work, we fabricated an ITO/WOX/TaN memristor device by reactive sputtering to investigate resistive switching and conduct analog resistive switching to implement artificial synaptic devices. The device showed good pulse endurance (104 cycles), a high on/off ratio (>10), and long retention (>104 s) at room temperature. The conduction mechanism could be explained by Schottky emission conduction. Further, the resistive switching characteristics were performed by additional pulse-signal-based experiments for more practical operation. Lastly, the potentiation/depression characteristics were examined for 10 cycles. The results thus indicate that the WOX-based devices are appropriate candidates for synaptic devices as well as next-generation nonvolatile memory.

17.
Materials (Basel) ; 16(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37110092

RESUMEN

This work critically reviews the evolution of reactive sputtering modeling that has taken place over the last 50 years. The review summarizes the main features of the deposition of simple metal compound films (nitrides, oxides, oxynitrides, carbides, etc.) that were experimentally found by different researchers. The above features include significant non-linearity and hysteresis. At the beginning of the 1970s, specific chemisorption models were proposed. These models were based on the assumption that a compound film was formed on the target due to chemisorption. Their development led to the appearance of the general isothermal chemisorption model, which was supplemented by the processes on the surfaces of the vacuum chamber wall and the substrate. The model has undergone numerous transformations for application to various problems of reactive sputtering. At the next step in the development of modeling, the reactive sputtering deposition (RSD) model was proposed, which was based on the implantation of reactive gas molecules into the target, bulk chemical reaction, chemisorption, and the "knock-on effect". Another direction of the modeling development is represented by the nonisothermal physicochemical model, in which the Langmuir isotherm and the law of mass action are used. Various modifications of this model allowed describing reactive sputtering processes in more complex cases when the sputtering unit included a hot target or a sandwich one.

18.
ACS Appl Mater Interfaces ; 15(36): 42659-42666, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665642

RESUMEN

To overcome significantly sluggish oxygen-ion conduction in the electrolytes of low-temperature solid-oxide fuel cells (SOFCs), numerous researchers have devoted considerable effort to fabricating the electrolytes as thin as possible. However, thickness is not the only factor that affects the electrolyte performance; roughness, grain size, and internal film stress also play a role. In this study, yttria-stabilized zirconia (YSZ) was deposited via a reactive sputtering process to fabricate high-performance thin-film electrolytes. Various sputtering chamber pressures (5, 10, and 15 mTorr) were investigated to improve the electrolytes. As a result, high surface area, large grain size, and residual tensile stress were successfully obtained by increasing the sputtering pressure. To clarify the correlation between the microstructure and electrolyte performance, a YSZ thin-film electrolyte was applied to anodized aluminum oxide-supported SOFCs composed of conventional electrode materials which are Ni and Pt as the anode and the cathode, respectively. The thin-film SOFC with YSZ deposited at 15 mTorr exhibited the lowest ohmic resistance and, consequently, the highest maximum power density (493 mW/cm2) at 500 °C whose performance is more than five times higher than that of the cell with YSZ deposited at 5 mTorr (94.1 mW/cm2). Despite the basic electrode materials, exceptionally high performance at low operating temperature was achieved via controlling the single fabrication condition for the electrolyte.

19.
J Biomed Mater Res B Appl Biomater ; 110(1): 229-238, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259381

RESUMEN

We have studied the charge-injection characteristics and electrochemical impedance of sputtered ruthenium oxide (RuOx ) films as electrode coatings for neural stimulation and recording electrodes. RuOx films were deposited by reactive DC magnetron sputtering, using a combination of water vapor and oxygen gas as reactive plasma constituents. The cathodal charge storage capacity of planar RuOx electrodes was found to be 54.6 ± 9.5 mC/cm2 (mean ± SD, n = 12), and the charge-injection capacity in a 0.2-ms cathodal current pulse was found to be 7.1 ± 0.3 mC/cm2 (mean ± SD, n = 15) at 0.6 V positive bias versus Ag|AgCl, in phosphate buffer saline at room temperature for ~250 nm thick films. In general, the RuOx films exhibited high charge-injection capacities, with or without a positive interpulse bias, comparable to sputtered iridium oxide (SIROF) coatings. The charge-injection capacity increased monotonically with film thickness from 120 to 630 nm, and reached 11.30 ± 0.34 mC/cm2 (mean ± SD, n = 5) at 0.6 V bias versus Ag|AgCl at 630 nm film thickness. In addition, RuOx films showed minimal changes in electrochemical characteristics over 1.5 billion cycles of constant current pulsing at a charge density of 408 µC/cm2 (8 nC/phase, 200 µs pulse width). The findings of low-impedance, high charge-injection capacity, and long-term pulsing stability suggest the suitability of RuOx as a comparatively inexpensive and favorable choice of electrode material for neural stimulation and recording.


Asunto(s)
Rutenio , Estimulación Eléctrica , Electrodos , Electrodos Implantados , Microelectrodos , Óxidos , Oxígeno
20.
Micromachines (Basel) ; 13(9)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36144169

RESUMEN

Aluminum nitride (AlN) thin-film materials possess a wide energy gap; thus, they are suitable for use in various optoelectronic devices. In this study, AlN thin films were deposited using radio frequency magnetron sputtering with an Al sputtering target and N2 as the reactive gas. The N2 working gas flow rate was varied among 20, 30, and 40 sccm to optimize the AlN thin film growth. The optimal AlN thin film was produced with 40 sccm N2 flow at 500 W under 100% N2 gas and at 600 °C. The films were studied using X-ray diffraction and had (002) phase orientation. X-ray photoelectron spectroscopy was used to determine the atomic content of the optimal film to be Al, 32%; N, 52%; and O, 12% at 100 nm beneath the surface of the thin film. The film was also investigated through atomic force microscopy and had a root mean square roughness of 2.57 nm and a hardness of 76.21 GPa. Finally, in situ continual sputtering was used to produce a gallium nitride (GaN) layer on Si with the AlN thin film as a buffer layer. The AlN thin films investigated in this study have excellent material properties, and the proposed process could be a less expensive method of growing high-quality GaN thin films for various applications in GaN-based power transistors and Si integrated circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA