Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012828

RESUMEN

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Asunto(s)
Embryophyta , Regulación de la Expresión Génica de las Plantas , Micorrizas , Proteínas de Plantas , Simbiosis , Simbiosis/genética , Micorrizas/fisiología , Micorrizas/genética , Embryophyta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/microbiología , Filogenia
2.
Plant Cell Physiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757845

RESUMEN

Whole genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR Insensitive 1) and BRL1/3 (BRI1-likes 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.

3.
Plant Cell Physiol ; 65(7): 1149-1159, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38581668

RESUMEN

Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.


Asunto(s)
Micorrizas , Proteínas de Plantas , Raíces de Plantas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/enzimología , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Micorrizas/fisiología , Quitina/metabolismo , Lipopolisacáridos/farmacología , Oligosacáridos/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Nicotiana/metabolismo , Quitosano/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/enzimología
4.
J Exp Bot ; 75(12): 3685-3699, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38683617

RESUMEN

Every cell constantly receives signals from its neighbours or the environment. In plants, most signals are perceived by RECEPTOR-LIKE KINASEs (RLKs) and then transmitted into the cell. The molecular switches RHO OF PLANTS (ROP) are critical proteins for polar signal transduction and regulate multiple cell polarity processes downstream of RLKs. Many ROP-regulating proteins and scaffold proteins of the ROP complex are known. However, the spatiotemporal ROP signalling complex composition is not yet understood. Moreover, how specificity is achieved in different ROP signalling pathways within one cell still needs to be determined. This review gives an overview of recent advances in ROP signalling and how specificity by downstream scaffold proteins can be achieved. The composition of the ROP signalling complexes is discussed, focusing on the possibility of the simultaneous presence of ROP activators and inactivators within the same complex to balance ROP activity. Furthermore, this review highlights the function of plant-specific ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS polarizing ROP signalling and defining the specificity of the initiated ROP signalling pathway.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Proteínas de Plantas , Plantas , Transducción de Señal , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
5.
Bioorg Med Chem Lett ; 108: 129797, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38759932

RESUMEN

TGF-ß is an immunosuppressive cytokine and plays a key role in progression of cancer by inducing immunosuppression in tumor microenvironment. Therefore, inhibition of TGF-ß signaling pathway may provide a potential therapeutic intervention in treating cancers. Herein, we report the discovery of a series of novel thiazole derivatives as potent inhibitors of ALK5, a serine-threonine kinase which is responsible for TGF-ß signal transduction. Compound 29b was identified as a potent inhibitor of ALK5 with an IC50 value of 3.7 nM with an excellent kinase selectivity.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta , Tiazoles , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Estructura Molecular , Relación Dosis-Respuesta a Droga
6.
Mol Biol Rep ; 51(1): 735, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874770

RESUMEN

BACKGROUND: Pomegranate (Punica granatum L.) is a tropical fruit crop of pharma-nutritional importance. However, it faces farming challenges due to pests and diseases, particularly bacterial blight and wilt. Developing resistant cultivars is crucial for sustainable pomegranate cultivation, and understanding resistance's genetic basis is essential. METHODS AND RESULTS: We used an extensive resistance gene analogues (RGA) prediction tool to identify 958 RGAs, classified into Nucleotide Binding Site-leucine-rich repeat (NBS-LRR) proteins, receptor-like kinases (RLKs), receptor-like proteins (RLPs), Transmembrane coiled-coil (TM-CC), and nine non-canonical RGAs. RGAs were distributed across all eight chromosomes, with chromosome 02 containing the most RGAs (161), and chromosome 08 having the highest density (4.42 RGA/Mb). NBS-LRR genes were predominantly present on chromosomes 08 and 02, whereas RLKs and RLPs were primarily located on chromosomes 04 and 07. Gene ontology analysis revealed that 475 RGAs were associated with defence against various biotic stresses. Using RNAseq, we identified 120 differentially expressed RGAs, with RLKs (74) being prominent among the differentially expressed genes. CONCLUSION: The discovery of these RGAs is a significant step towards breeding pomegranates for pest and disease resistance. The differentially expressed RLKs hold promise for developing resistant cultivars against bacterial blight, thereby contributing to the sustainability of pomegranate cultivation.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Granada (Fruta) , Transcriptoma , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Granada (Fruta)/genética , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Xanthomonas/patogenicidad
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161289

RESUMEN

Receptor-like kinases (RLKs) are key cell signaling components. The rice ARBUSCULAR RECEPTOR-LIKE KINASE 1 (OsARK1) regulates the arbuscular mycorrhizal (AM) association postarbuscule development and belongs to an undefined subfamily of RLKs. Our phylogenetic analysis revealed that ARK1 has an ancient paralogue in spermatophytes, ARK2 Single ark2 and ark1/ark2 double mutants in rice showed a nonredundant AM symbiotic function for OsARK2 Global transcriptomics identified a set of genes coregulated by the two RLKs, suggesting that OsARK1 and OsARK2 orchestrate symbiosis in a common pathway. ARK lineage proteins harbor a newly identified SPARK domain in their extracellular regions, which underwent parallel losses in ARK1 and ARK2 in monocots. This protein domain has ancient origins in streptophyte algae and defines additional overlooked groups of putative cell surface receptors.


Asunto(s)
Micorrizas/metabolismo , Oryza/enzimología , Filogenia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Secuencia de Aminoácidos , Dominios Proteicos , Proteínas Tirosina Quinasas Receptoras/química
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731974

RESUMEN

Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.


Asunto(s)
Frutas , Germinación , Ácidos Indolacéticos , Proteínas de Plantas , Transducción de Señal , Solanum lycopersicum , Ácido Abscísico/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo
9.
Physiol Mol Biol Plants ; 30(5): 851-866, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846461

RESUMEN

Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subgroup of receptor-like kinases (RLKs) in plants. While some LRR-RLK members play a role in regulating various plant growth processes related to morphogenesis, disease resistance, and stress response, the functions of most LRR-RLK genes remain unclear. In this study, we identified 397 LRR-RLK genes from the genome of Camellia sinensis and categorized them into 16 subfamilies. Approximately 62% of CsLRR-RLK genes are situated in regions resulting from segmental duplications, suggesting that the expansion of CsLRR-RLK genes is due to segmental duplications. Analysis of gene expression patterns revealed differential expression of CsLRR-RLK genes across different tissues and in response to stress. Furthermore, we demonstrated that CssEMS1 localizes to the cell membrane and can complement Arabidopsis ems1 mutant. This study is the initial in-depth evolutionary examination of LRR-RLKs in tea and provides a basis for future investigations into their functionality. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01458-1.

10.
Plant Cell Physiol ; 64(7): 746-757, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098213

RESUMEN

Lysin motif receptor-like kinases (LysM-RLKs) are involved in the perception of chitooligosaccharides (COs) and related lipochitooligosaccharides (LCOs) in plants. Expansion and divergence of the gene family during evolution have led to various roles in symbiosis and defense. By studying proteins of the LYR-IA subclass of LysM-RLKs of the Poaceae, we show here that they are high-affinity LCO-binding proteins with a lower affinity for COs, consistent with a role in LCO perception to establish arbuscular mycorrhiza (AM). In Papilionoid legumes, whole-genome duplication has resulted in two LYR-IA paralogs, MtLYR1 and MtNFP in Medicago truncatula, with MtNFP playing an essential role in root nodule symbiosis with nitrogen-fixing rhizobia. We show that MtLYR1 has retained the ancestral LCO-binding characteristic and is dispensable for AM. Domain swapping between the three LysMs of MtNFP and MtLYR1 and mutagenesis in MtLYR1 suggest that the MtLYR1 LCO-binding site is on the second LysM and that divergence in MtNFP led to better nodulation, but surprisingly with decreased LCO binding. These results suggest that divergence of the LCO-binding site has been important for the evolution of a role of MtNFP in nodulation with rhizobia.


Asunto(s)
Medicago truncatula , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Micorrizas/metabolismo , Simbiosis/genética , Quitina/metabolismo
11.
New Phytol ; 238(3): 1045-1058, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36772858

RESUMEN

Proper stamen filament elongation is essential for plant self-pollination and reproduction. Several phytohormones such as jasmonate and gibberellin play important roles in controlling filament elongation, but other endogenous signals involved in this developmental process remain unknown. We report here that three EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family peptides, EPFL4, EPFL5 and EPFL6, act redundantly to promote stamen filament elongation via enhancing filament cell proliferation in Arabidopsis thaliana. Knockout of EPFL4-6 genes led to shortened filaments due to defective filament cell proliferation, resulting in pollination failure and male sterility. Further genetic and biochemical analyses indicated that the ERECTA family and the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs form receptor complexes to perceive EPFL4-6 peptides and promote filament cell proliferation. Moreover, based on both loss- and gain-of-function genetic analyses, the mitogen-activated protein kinase cascade MKK4/MKK5-MPK6 was shown to function downstream of EPFL4-6 to positively regulate cell proliferation in stamen filaments. Together, this study reveals that an EPFL peptide signaling pathway composed of the EPFL4-6 peptide ligands, the ERECTA-SERK receptor complexes and the downstream MKK4/MKK5-MPK6 cascade promotes stamen filament elongation via enhancing filament cell proliferation to ensure successful self-pollination and normal fertility in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polinización , Transducción de Señal , Proliferación Celular , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
J Exp Bot ; 74(14): 3998-4013, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013998

RESUMEN

L-type lectin receptor-like kinases (L-LecRKs) act as sensors of extracellular signals and as initiators for plant immune responses; however, the function of LecRK-S.4 in plant immunity has not yet been extensively investigated. In the present study we found that MdLecRK-S.4.3 in apple (Malus domestica), a homologous gene of LecRK-S.4, was differentially expressed during infection by Valsa mali and Valsa pyri. Overexpression of MdLecRK-S.4.3 facilitated the induction of immune responses and enhanced the resistance to Valsa canker of fruits of apple and pear (Pyrus betulifolia), and of suspension cells of pear 'Duli-G03'. The expression of PbePUB36, a RLCK XI sub-family member, was significantly repressed in the MdLecRK-S.4.3-overexpressing cell lines. Overexpression of PbePUB36 interfered with the resistance to Valsa canker and the immune response caused by up-regulation of MdLecRK-S.4.3. In addition, we found that MdLecRK-S.4.3 interacted with BAK1 and/or PbePUB36 in vivo. Thus, whilst MdLecRK-S.4.3 activated various immune responses and positively regulated Valsa canker resistance, this could be largely compromised by PbePUB36. MdLecRK-S.4.3 interacted with PbePUB36 and/or MdBAK1 to mediate the immune responses. Our finding provides a basis for further examination of the molecular mechanisms underlying resistance to Valsa canker, and can contribute to resistance breeding.


Asunto(s)
Malus , Pyrus , Pyrus/genética , Fitomejoramiento , Malus/genética , Malus/metabolismo , Enfermedades de las Plantas/genética
13.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834209

RESUMEN

The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.


Asunto(s)
Plantas , Proteínas Quinasas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico , Transducción de Señal/fisiología
14.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047410

RESUMEN

Plant cell surface-localized receptor-like kinases (RLKs) recognize invading pathogens and transduce the immune signals inside host cells, subsequently triggering immune responses to fight off pathogen invasion. Nonetheless, our understanding of the role of RLKs in wheat resistance to the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) remains limited. During the differentially expressed genes in Pst infected wheat leaves, a Leucine-repeat receptor-like kinase (LRR-RLK) gene TaBIR1 was significantly upregulated in the incompatible wheat-Pst interaction. qRT-PCR verified that TaBIR1 is induced at the early infection stage of Pst. The transient expression of TaBIR1-GFP protein in N. bentamiana cells and wheat mesophyll protoplasts revealed its plasma membrane location. The knockdown of TaBIR1 expression by VIGS (virus induced gene silencing) declined wheat resistance to stripe rust, resulting in reduced reactive oxygen species (ROS) production, callose deposition, and transcripts of pathogenesis-related genes TaPR1 and TaPR2, along with increased Pst infection area. Ectopic overexpression of TaBIR1 in N. benthamiana triggered constitutive immune responses with significant cell death, callose accumulation, and ROS production. Moreover, TaBIR1 triggered immunity is dependent on NbBAK1, the silencing of which significantly attenuated the defense response triggered by TaBIR1. TaBIR1 interacted with the NbBAK1 homologues in wheat, co-receptor TaSERK2 and TaSERK5, the transient expression of which could restore the impaired defense due to NbBAK1 silencing. Taken together, TaBIR1 is a cell surface RLK that contributes to wheat stripe rust resistance, probably as a positive regulator of plant immunity in a BAK1-dependent manner.


Asunto(s)
Basidiomycota , Triticum , Triticum/microbiología , Leucina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inmunidad Innata , Basidiomycota/genética , Enfermedades de las Plantas/microbiología
15.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511479

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are a type of receptor-like kinases (RLKs) that are important for pathogen resistance, extracellular reactive oxygen species (ROS) signaling, and programmed cell death in plants. In a previous study, we identified 46 CRK family members in the Phaseolus vulgaris genome and found that CRK12 was highly upregulated under root nodule symbiotic conditions. To better understand the role of CRK12 in the Phaseolus-Rhizobia symbiotic interaction, we functionally characterized this gene by overexpressing (CRK12-OE) and silencing (CRK12-RNAi) it in a P. vulgaris hairy root system. We found that the constitutive expression of CRK12 led to an increase in root hair length and the expression of root hair regulatory genes, while silencing the gene had the opposite effect. During symbiosis, CRK12-RNAi resulted in a significant reduction in nodule numbers, while CRK12-OE roots showed a dramatic increase in rhizobial infection threads and the number of nodules. Nodule cross sections revealed that silenced nodules had very few infected cells, while CRK12-OE nodules had enlarged infected cells, whose numbers had increased compared to controls. As expected, CRK12-RNAi negatively affected nitrogen fixation, while CRK12-OE nodules fixed 1.5 times more nitrogen than controls. Expression levels of genes involved in symbiosis and ROS signaling, as well as nitrogen export genes, supported the nodule phenotypes. Moreover, nodule senescence was prolonged in CRK12-overexpressing roots. Subcellular localization assays showed that the PvCRK12 protein localized to the plasma membrane, and the spatiotemporal expression patterns of the CRK12-promoter::GUS-GFP analysis revealed a symbiosis-specific expression of CRK12 during the early stages of rhizobial infection and in the development of nodules. Our findings suggest that CRK12, a membrane RLK, is a novel regulator of Phaseolus vulgaris-Rhizobium tropici symbiosis.


Asunto(s)
Phaseolus , Rhizobium tropici , Rhizobium , Simbiosis/genética , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Phaseolus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Rhizobium/metabolismo , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/metabolismo
16.
Plant J ; 106(1): 174-184, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33423360

RESUMEN

Receptor-like kinases (RLKs) play significant roles in mediating innate immunity and development of plants. The evolution of plant RLKs has been characterized by extensive variation in copy numbers and domain configurations. However, much remains unknown about the origin, evolution, and early diversification of plant RLKs. Here, we perform phylogenomic analyses of RLKs across plants (Archaeplastida), including embryophytes, charophytes, chlorophytes, prasinodermophytes, glaucophytes, and rhodophytes. We identify the presence of RLKs in all the streptophytes (land plants and charophytes), nine out of 18 chlorophytes, one prasinodermophyte, and one glaucophyte, but not in rhodophytes. Interestingly, the copy number of RLKs increased drastically in streptophytes after the split of the clade of Mesostigmatophyceae and Chlorokybophyceae and other streptophytes. Moreover, phylogenetic analyses suggest RLKs from charophytes form diverse distinct clusters, and are dispersed along the diversity of land plant RLKs, indicating that RLKs have extensively diversified in charophytes and charophyte RLKs seeded the major diversity of land plant RLKs. We identify at least 81 and 76 different kinase-associated domains for charophyte and land plant RLKs, 23 of which are shared, suggesting that RLKs might have evolved in a modular fashion through frequent domain gains or losses. We also detect signatures of positive selection for many charophyte RLK groups, indicating potential functions in host-microbe interaction. Taken together, our findings provide significant insights into the early evolution and diversification of plant RLKs and the ancient evolution of plant-microbe symbiosis.


Asunto(s)
Evolución Molecular , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Filogenia , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas Quinasas/genética
17.
BMC Genomics ; 23(1): 480, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768782

RESUMEN

BACKGROUND: Lectin receptor-like kinases (Lec-RLKs), a subfamily of RLKs, have been demonstrated to play an important role in signal transduction from cell wall to the plasma membrane during biotic stresses. Lec-RLKs include legume lectin-like proteins (LLPs), an important group of apoplastic proteins that are expressed in regenerating cell walls and play a role in immune-related responses. However, it is unclear whether LLPs have a function in abiotic stress mitigation and related signaling pathways. Therefore, in this study, we examined the possible role of LLPs in Arabidopsis thaliana (AtLLPs) under various abiotic stresses. RESULTS: The study was initiated by analyzing the chromosomal localization, gene structure, protein motif, peptide sequence, phylogeny, evolutionary divergence, and sub-cellular localization of AtLLPs. Furthermore, the expression profiling of these AtLLPs was performed using publicly accessible microarray datasets under various abiotic stresses, which indicated that all AtLLPs were differently expressed in both root and shoot tissues in response to abiotic stresses. The cis-regulatory elements (CREs) analysis in 500 bp promoter sequences of AtLLPs suggested the presence of multiple important CREs implicated for regulating abiotic stress responses, which was further supported by expressional correlation analysis between AtLLPs and their CREs cognate transcription factors (TFs). qRT-PCR analysis of these AtLLPs after 2, 6, and 12 h of cold, high light, oxidative (MV), UV-B, wound, and ozone stress revealed that all AtLLPs displayed differential expression patterns in most of the tested stresses, supporting their roles in abiotic stress response and signaling again. Out of these AtLLPs, AT1g53070 and AT5g03350 appeared to be important players. Furthermore, the mutant line of AT5g03350 exhibited higher levels of ROS than wild type plants till 12 h of exposure to high light, MV, UV-B, and wound, whereas its overexpression line exhibited comparatively lower levels of ROS, indicating a positive role of this gene in abiotic stress response in A. thaliana. CONCLUSIONS: This study provides basic insights in the involvement of two important representative AtLLPs, AT1g53070 and AT5g03350, in abiotic stress response. However, further research is needed to determine the specific molecular mechanism of these AtLLPs in abiotic stress mitigation and related signaling pathways in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fabaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lectinas/genética , Filogenia , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
18.
Plant Mol Biol ; 109(4-5): 483-504, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35674976

RESUMEN

Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.


Asunto(s)
Arabidopsis , Transducción de Señal , Arabidopsis/genética , Pared Celular/fisiología , Regulación de la Expresión Génica de las Plantas , Células Vegetales/fisiología , Plantas , Estrés Fisiológico
19.
New Phytol ; 233(1): 313-328, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614228

RESUMEN

The embryonic cuticle integrity is critical for the embryo to separate from the neighboring endosperm. The sulfated TWISTED SEED1 (TWS1) peptide precursor generated in the embryo diffuses through gaps of the nascent cuticle to the surrounding endosperm, where it is cleaved by ABNORMAL LEAF SHAPE1 (ALE1) and becomes an active mature form. The active TWS1 is perceived by receptor-like protein kinases GASSHO1 (GSO1) and GSO2 in the embryonic epidermal cells to start the downstream signaling and guide the formation of an intact embryonic cuticle. However, the early signaling events after TWS1 is perceived by GSO1/2 are still unknown. Here, we report that serk1/2/3 embryos show cuticle defects similar to ale1, tws1, and gso1/2. Genetic and biochemical analyses were performed to dissect the signaling pathway mediated by SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs) during cuticle development. SERKs function with GSO1/2 in a common pathway to monitor the integrity of the embryonic cuticle. SERKs interact with GSO1/2, which can be enhanced dramatically by TWS1. The phosphorylation levels of SERKs and GSO1/2 rely on each other and can respond to and be elevated by TWS1. Our results demonstrate that SERKs may function as coreceptors of GSO1/2 to transduce the TWS1 signal and ultimately regulate embryonic cuticle integrity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Endospermo/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal
20.
New Phytol ; 235(5): 2008-2021, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35590484

RESUMEN

Soil microorganisms can colonize plant roots and assemble in communities engaged in symbiotic relationships with their host. Though the compositional dynamics of root-associated microbiomes have been extensively studied, the host transcriptional response to these communities is poorly understood. Here, we developed an experimental system by which rice plants grown under axenic conditions can acquire a defined endosphere microbiome. Using this setup, we performed a cross-sectional characterization of plant transcriptomes in the presence or absence of a complex microbial community. To account for compositional variation, plants were inoculated with soil-derived microbiomes harvested from three distinct agricultural sites. Soil microbiomes triggered a major shift in the transcriptional profiles of rice plants that included the downregulation of one-third to one-fourth of the families of leucine-rich repeat receptor-like kinases and nucleotide-binding leucine-rich repeat receptors expressed in roots. Though the expression of several genes was consistent across all soil sources, a large fraction of this response was differentially impacted by soil type. These results demonstrate the role of root microbiomes in sculpting the transcriptomes of host plants and highlight the potential involvement of the two main receptor families of the plant immune system in the recruitment and maintenance of an endosphere microbiome.


Asunto(s)
Microbiota , Oryza , Estudios Transversales , Leucina , Oryza/genética , Raíces de Plantas/genética , Plantas/genética , Rizosfera , Suelo , Microbiología del Suelo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA