Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ann Bot ; 123(6): 1079-1088, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-30778530

RESUMEN

BACKGROUND AND AIMS: Phytochrome B (phyB) is a photosensory receptor important for the control of plant plasticity and resource partitioning. Whether phyB is required to optimize plant biomass accumulation in agricultural crops exposed to full sunlight is unknown. Here we investigated the impact of mutations in the genes that encode either phyB1 or phyB2 on plant growth and grain yield in field crops of Zea mays sown at contrasting population densities. METHODS: Plants of maize inbred line France 2 wild type (WT) and the isogenic mutants lacking either phyB1 or phyB2 (phyB1 and phyB2) were cultivated in the field during two seasons. Plants were grown at two densities (9 and 30 plants m-2), irrigated and without restrictions of nutrients. Leaf and stem growth, leaf anatomy, light interception, above-ground biomass accumulation and grain yield were recorded. KEY RESULTS: At high plant density, all the lines showed similar kinetics of biomass accumulation. However, compared with the WT, the phyB1 and phyB2 mutations impaired the ability to enhance plant growth in response to the additional resources available at low plant density. This effect was largely due to a reduced leaf area (fewer cells per leaf), which compromised light interception capacity. Grain yield was reduced in phyB1 plants. CONCLUSIONS: Maize plants grown in the field at relatively low densities require phyB1 and phyB2 to sense the light environment and optimize the use of the available resources. In the absence of either of these two light receptors, leaf expansion is compromised, imposing a limitation to the interception of photosynthetic radiation and growth. These observations suggest that genetic variability at the locus encoding phyB could offer a breeding target to improve crop growth capacity in the field.


Asunto(s)
Fitocromo B , Zea mays , Biomasa , Francia , Desarrollo de la Planta , Hojas de la Planta
2.
Plant Cell Environ ; 40(5): 635-644, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27943325

RESUMEN

Under conditions that involve a high risk of competition for light among neighbouring plants, shade-intolerant species often display increased shoot elongation and greater susceptibility to pathogens and herbivores. The functional links between morphological and defence responses to crowding are not well understood. In Arabidopsis, the protein JAZ10 is thought to play a key role connecting the inactivation of the photoreceptor phytochrome B (phyB), which takes place under competition for light, with the repression of jasmonate-mediated plant defences. Here, we show that a null mutation of the JAZ10 gene in Arabidopsis did not affect plant growth nor did it suppress the shade-avoidance responses elicited by phyB inactivation. However, the jaz10 mutation restored many of the defence traits that are missing in the phyB mutant, including the ability to express robust responses to jasmonate and to accumulate indolic glucosinolates. Furthermore, the jaz10phyB double mutant showed a significantly increased resistance to the pathogenic fungus Botrytis cinerea compared with the phyB parental line. Our results demonstrate that, by inactivating JAZ10, it is possible to partially uncouple shade avoidance from defence suppression in Arabidopsis. These findings may provide clues to improve plant resistance to pathogens in crops that are planted at high density.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Fitocromo B/metabolismo , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Botrytis/fisiología , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Glucosinolatos/metabolismo , Luz , Mutación/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de la radiación , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
3.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28829375

RESUMEN

CBF (C-repeat binding factor) transcription factors show high expression levels in response to cold; moreover, they play a key regulatory role in cold acclimation processes. Recently, however, more and more information has led to the conclusion that, apart from cold, light-including its spectra-also has a crucial role in regulating CBF expression. Earlier, studies established that the expression patterns of some of these regulatory genes follow circadian rhythms. To understand more of this complex acclimation process, we studied the expression patterns of the signal transducing pathways, including signal perception, the circadian clock and phospholipid signalling pathways, upstream of the CBF gene regulatory hub. To exclude the confounding effect of cold, experiments were carried out at 22 °C. Our results show that the expression of genes implicated in the phospholipid signalling pathway follow a circadian rhythm. We demonstrated that, from among the tested CBF genes expressed in Hordeumvulgare (Hv) under our conditions, only the members of the HvCBF4-phylogenetic subgroup showed a circadian pattern. We found that the HvCBF4-subgroup genes were expressed late in the afternoon or early in the night. We also determined the expression changes under supplemental far-red illumination and established that the transcript accumulation had appeared four hours earlier and more intensely in several cases. Based on our results, we propose a model to illustrate the effect of the circadian clock and the quality of the light on the elements of signalling pathways upstream of the HvCBFs, thus integrating the complex regulation of the early cellular responses, which finally lead to an elevated abiotic stress tolerance.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hordeum/fisiología , Luz , Transducción de Señal , Factores de Transcripción/genética , Calcio/metabolismo , Relojes Circadianos/genética , Perfilación de la Expresión Génica , Metabolismo de los Lípidos/genética , Fosfolípidos/metabolismo , Transducción de Señal/efectos de la radiación , Factores de Transcripción/metabolismo
4.
Ann Bot ; 117(1): 51-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26424785

RESUMEN

BACKGROUND AND AIMS: Tiller production and survival determine final spike number, and play key roles in grain yield formation in wheat (Triticum aestivum). This study aimed to understand the genetic and physiological basis of the tillering process, and its trade-offs with other yield components, by introducing genetic variation in tillering patterns via a mapping population of wheat × spelt (Triticum spelta). METHODS: The dynamics of tillering and red/far-red ratio (R:FR) at the base of a canopy arising from neighbouring plants in a bread wheat (Triticum aestivum 'Forno') × spelt (Triticum spelta 'Oberkulmer') mapping population were measured in the field in two growing seasons. Additional thinning and shading experiments were conducted in the field and glasshouse, respectively. Yield components were analysed for all experiments, followed by identification of quantitative trait loci (QTL) associated with each trait. KEY RESULTS: Large genetic variation in tillering was observed, and more fertile shoots per plant were associated with more total shoots initiated, faster tillering rate, delayed tillering onset and cessation, and higher shoot survival. A total of 34 QTL for tillering traits were identified, and analysis of allelic effects confirmed the above associations. Low R:FR was associated with early tillering cessation, few total shoots, high infertile shoot number and shoot abortion, and these results concurred with the thinning and shading experiments. These effects probably resulted from an assimilate shortage for tiller buds or developing tillers, due to early stem elongation and enhanced stem growth induced by low R:FR. More fertile tillers normally contributed to plant yield and grain number without reducing yield and grain set of individual shoots. However, there was a decrease in grain weight, partly because of smaller carpels and fewer stem water-soluble carbohydrates at anthesis caused by pleiotropy or tight gene linkages. CONCLUSIONS: Tillering is under the control of both genetic factors and R:FR. Genetic variation in tillering and tolerance to low R:FR can be used to optimize tillering patterns for yield improvement in wheat.


Asunto(s)
Pan , Mapeo Cromosómico , Cruzamientos Genéticos , Tallos de la Planta/anatomía & histología , Semillas/anatomía & histología , Triticum/anatomía & histología , Triticum/fisiología , Endogamia , Luz , Fenotipo , Hojas de la Planta/fisiología , Tallos de la Planta/efectos de la radiación , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Recombinación Genética/genética , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Triticum/efectos de la radiación
5.
Ann Bot ; 115(6): 961-70, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25851141

RESUMEN

BACKGROUND AND AIMS: Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. METHODS: The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. KEY RESULTS: Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. CONCLUSIONS: The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions.


Asunto(s)
Biomasa , Hordeum/metabolismo , Hordeum/efectos de la radiación , Luz , Plantas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Etilenos/metabolismo , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo
6.
Plants (Basel) ; 13(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999661

RESUMEN

Plant density is increasing in modern olive orchards to improve yields and facilitate mechanical harvesting. However, greater density can reduce light quantity and modify its quality. The objective was to evaluate plant morphology, biomass, and photosynthetic pigments under different red/far-red ratios and photosynthetically active radiation (PAR) combinations in an olive cultivar common to super-high-density orchards. In a greenhouse, young olive trees (cv. Arbequina) were exposed to low (L) or high (H) PAR with or without lateral FR supplementation (L+FR, L-FR, H+FR, H-FR) using neutral-density shade cloth and FR light-emitting diode (LED) modules. Total plant and individual organ biomass were much lower in plants under low PAR than under high PAR, with no response to +FR supplementation. In contrast, several plant morphological traits, such as main stem elongation, individual leaf area, and leaf angle, did respond to both low PAR and +FR. Total chlorophyll content decreased with +FR when PAR was low, but not when PAR was high (i.e., a significant FR*PAR interaction). When evaluating numerous plant traits together, a greater response to +FR under low PAR than under high PAR appeared to occur. These findings suggest that consideration of light quality in addition to quantity facilitates a fuller understanding of olive tree responses to a light environment. The +FR responses found here could lead to changes in hedgerow architecture and light distribution within the hedgerow.

7.
Plant Biol (Stuttg) ; 23(6): 981-991, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34532932

RESUMEN

The coexistence of plant species in tropical rainforests is related to specific abiotic resources, varying according to the occurrence microhabitat of each species. Light quality is the main abiotic factor influencing germination of small seeds; however, studies often do not discriminate its effect from that of light irradiance. This study compared specific requirements for seed germination of ten small-seeded species, with restricted occurrence in only one of three contrasting microhabitats: forest understorey, edge of clearings and open areas. Laboratory experiments were carried out to test temperature regime (constant or fluctuating), light quality (R:FR) and light irradiance (PAR), which reproduce high and low conditions commonly found in the microhabitats. Seed germination of all species occurred between 20 and 30 °C, only seeds of open area species were able to germinate at 35 °C and no species required alternating temperatures to germinate. Irrespective of species and microhabitat, a decrease in the R:FR reduced the germination percentage; however, there were differences in the capacity to germinate at low R:FR. The values of R:FR50% were higher for open area and edge species (0.441-0.345) than for understorey species (0.181-0.109), with few exceptions. For all species and most of the tests, germination was not influenced by PAR. Light quality is the most important light signal for germination of small seeds; irradiance has little effect. Our results suggest two distinct patterns of germination for small-seeded species: open area and edge species are light-demanding and require high R:FR to germinate, while understorey species are shade-tolerant and germinate at low R:FR. These differences are responsible for distinct microhabitat occurrence and help to explain the coexistence of species in tropical forests.


Asunto(s)
Germinación , Semillas , Bosques , Temperatura
8.
Front Plant Sci ; 8: 386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28377784

RESUMEN

Understanding environmental responses of pulse crop species and their wild relatives will play an important role in developing genetic strategies for crop improvement in response to changes in climate. This study examined how cultivated lentil and wild Lens germplasm responded to different light environments, specifically differences in red/far-red ratio (R/FR) and photosynthetically active radiation (PAR). Three genotypes of each the seven Lens species were grown in environmentally controlled growth chambers equipped to provide light treatments consisting of different R/FR ratios and PAR values. Our results showed that overall, days to flower of Lens genotypes were mainly influenced by the R/FR induced light quality change but not by the PAR related light intensity change. The cultivated lentil (L. culinaris) showed consistent, accelerated flowering in response to the low R/FR light environment together with three wild lentil genotypes (L. orientalis IG 72611, L. tomentosus IG 72830, and L. ervoides IG 72815) while most wild lentil genotypes had reduced responses and flowering time was not significantly affected. The longest shoot length, longest internode length, and largest leaflet area were observed under the low R/FR low PAR environment for both cultivated and wild lentils. The distinctly different responses between flowering time and elongation under low R/FR conditions among wild Lens genotypes suggests discrete pathways controlling flowering and elongation, which are both components of shade avoidance responses. The yield and above-ground biomass of Lens genotypes were the highest under high R/FR high PAR conditions, intermediate under low R/FR low PAR conditions, and lowest under high R/FR low PAR light conditions. Three L. lamottei genotypes (IG 110809, IG 110810, and IG 110813) and one L. ervoides genotype (IG 72646) were less sensitive in their time to flower responses while maintaining similar yield, biomass, and harvest index across all three light environments; these are indications of better adaptability toward changes in light environment.

9.
Trends Plant Sci ; 22(4): 329-337, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28089490

RESUMEN

Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light.


Asunto(s)
Herbivoria/fisiología , Desarrollo de la Planta/fisiología , Plantas/metabolismo , Plantas/parasitología , Animales , Interacciones Huésped-Parásitos , Desarrollo de la Planta/genética , Fenómenos Fisiológicos de las Plantas
10.
Curr Biol ; 26(24): 3320-3326, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27889265

RESUMEN

Plants in dense vegetation perceive their neighbors primarily through changes in light quality. Initially, the ratio between red (R) and far-red (FR) light decreases due to reflection of FR by plant tissue well before shading occurs. Perception of low R:FR by the phytochrome photoreceptors induces the shade avoidance response [1], of which accelerated elongation growth of leaf-bearing organs is an important feature. Low R:FR-induced phytochrome inactivation leads to the accumulation and activation of the transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs) 4, 5, and 7 and subsequent expression of their growth-mediating targets [2, 3]. When true shading occurs, transmitted light is especially depleted in red and blue (B) wavelengths, due to absorption by chlorophyll [4]. Although the reduction of blue wavelengths alone does not occur in nature, long-term exposure to low B light induces a shade avoidance-like response that is dependent on the cryptochrome photoreceptors and the transcription factors PIF4 and PIF5 [5-7]. We show in Arabidopsis thaliana that low B in combination with low R:FR enhances petiole elongation similar to vegetation shade, providing functional context for a low B response in plant competition. Low B potentiates the low R:FR response through PIF4, PIF5, and PIF7, and it involves increased PIF5 abundance and transcriptional changes. Low B attenuates a low R:FR-induced negative feedback loop through reduced gene expression of negative regulators and reduced HFR1 levels. The enhanced response to combined phytochrome and cryptochrome inactivation shows how multiple light cues can be integrated to fine-tune the plant's response to a changing environment.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Criptocromos/fisiología , Fitocromo/fisiología , Proteínas de Arabidopsis , Fototropismo , Plantones/crecimiento & desarrollo , Transducción de Señal
11.
Oecologia ; 75(3): 394-399, 1988 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28312687

RESUMEN

The influence of temperature, stratification, red/far-red ratio of the light (R/FR) and combinations of these factors on the germination of Plantago lanceolata and Plantago major ssp major have been investigated under controlled conditions. Only quantitative differences were found in the response of the species to the various environmental factors investigated except for germination in darkness. P. lanceolata germinated in darkness, the percentage depending on environmental factors and seed collection, whereas P. major seed swere found to have a virtually absolute light requirement. P. lanceolata germinated at lower temperatures and was less inhibited at a low R/FR than P. major. Pot experiments and a field experiment were carried out in order to study the influence of the presence of grass on germination and emergence. P. major was more inhibited than P. lanceolata when sown among grass and the presence of vegetation did not inhibit the germination of P. lanceolata in the field experiment. The latter could be ascribed to the dormancy alleviating effect of low winter temperatures to which the seeds had been subjected. The inhibition of emergence of P. major among grass could be explained by the light factor only, whereas in the case of P. lanceolata an additional factor must be involved.

12.
Oecologia ; 97(4): 462-469, 1994 May.
Artículo en Inglés | MEDLINE | ID: mdl-28313734

RESUMEN

Depressions in the red to far-red ratio (R:FR) of solar radiation arising from the selective absorption of R (600-700 nm) and scattering of FR (700-800 nm) by chlorophyll within plant canopies may function as an environmental signal directly regulating axillary bud growth and subsequent ramet recruitment in clonal plants. We tested this hypothesis in the field within a single cohort of parental ramets in established clones of the perennial bunchgrass, Schizachyrium scoparium. The R:FR was modified near leaf sheaths and axillary buds at the bases of individual ramets throughout the photoperiod without increasing photosynthetic photon flux density (PPFD) by either (1) supplementing R beneath canopies to raise the naturally low R:FR or (2) supplementing FR beneath partially defoliated canopies to suppress the natural R:FR increase following defoliation. Treatment responses were assessed by simultaneously monitoring ramet recruitment, PPFD and the R:FR beneath individual clone canopies at biweekly intervals over a 12-week period. Neither supplemental R nor FR influenced the rate or magnitude of ramet recruitment despite the occurrence of ramet recruitment in all experimental clones. In contrast, defoliation with or without supplemental FR beneath clone canopies reduced ramet recruitment 88% by the end of the experiment. The hypothesis stating that the R:FR signal directly regulates ramet recruitment is further weakened by evidence demonstrating that (1) the low R:FR-induced suppression of ramet recruitment is only one component of several architectural modifications exhibited by ramets in response to the R:FR signal (2) immature leaf blades, rather than leaf sheaths or buds, function as sites of R:FR perception on individual ramets, and (3) increases in the R:FR at clone bases following partial canopy removal are relatively transient and do not override the associated constraints on ramet recruitment resulting from defoliation. A depressed R:FR is probably of greater ecological significance as a signal of competition for light in vegetation canopies than as a density-dependent signal which directly regulates bud growth and ramet recruitment.

13.
Oecologia ; 131(2): 175-185, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28547684

RESUMEN

To test whether the impact of drought on the growth and biomass allocation of first-season shade-tolerant woody seedlings in low irradiance differs from that in high irradiance, seedlings of Viburnum lantana, V. opulus, V. tinus and Hedera helix were grown in pots at two watering frequencies × three irradiances. Hypotheses in the recent literature variously predict that drought will have a stronger, weaker or equal impact on seedling relative growth rate (RGR) in deep shade relative to that in moderate shade. Experimental irradiance levels were selected in the typical range for temperate deciduous forest seedlings in either understorey or clearings: 3-4% daylight (low red: far-red shade), 3-4% daylight (neutral shade), and 30-40% daylight (neutral shade). Watering was 'frequent' (every 3-4 days) or 'infrequent' (five times during the 8-week experiment), producing soil matric potentials as low as -0.03 MPa, and -2 MPa. To prevent the interaction of irradiance and watering treatments, each seedling was grown in a 'shade tower' that was surrounded by an uncovered sward of grass (Festuca rubra), which depleted pot water at the same rate regardless of the species of seedling, or its irradiance treatment. Shading affected all species: seedlings in 3.5% daylight grew at 56-73% of their dry-mass RGR in 35% daylight. Low red: far-red shade reduced the RGR of Hedera to 68% of its value in neutral shade. Infrequent watering significantly reduced the RGR of only V. lantana and V. opulus, by approximately the same proportion across irradiance treatments. Infrequent watering did not significantly alter any species' biomass allocation across irradiance treatments. Such orthogonal impacts of deep shade and drought on seedling growth and biomass allocation indicate a large potential for niche differentiation at combinations of irradiance and water supply for species of forest seedlings, and suggest a multiplicative-effects approach for modelling seedling performance in microsites with different combinations of irradiance and water supply.

14.
Oecologia ; 103(1): 127-132, 1995 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28306953

RESUMEN

Strong fluctuations are exhibited by populations of the perennial herb Ambrosia tenuifolia in the grasslands of the Salado basin (Province of Buenos Aires, Argentina), an area frequently enduring prolonged floods. Flooding causes the death of most dicotyledon plants of the community, A. tenuifolia among them, opening numerous gaps of various sizes. After the recession of the flood the density of A. tenuifolia seedlings was higher in flooded than in non-flooded plots and it was larger in wider gaps. Canopy removal in non-flooded plots increased field seedling emergence of A. tenuifolia up to the levels found in flooded plots. Responses of the seeds in the soil to gap-associated environmental factors such as light quality and temperature regime were studied both in the field and under controlled were studied both in the field and under controlled conditions. Seedling emergence was significantly enhanced when the red:far-red ratio of natural light reaching the soil surface under the canopy of nonflooded plots was increased by means of copper sulfate filters. The influence of light quality and temperature on germination of the soil seed population was also tested using grassland soil monoliths or mesocosms, transported from the field to the laboratory, in which the canopy was clipped and the soil exposed to either red or far-red light and kept at constant or fluctuating temperatures. Significant seedling emergence was observed only when the soil samples were exposed to red light and incubated at alternating temperatures. No emergence was recorded in samples exposed to far-red light or incubated at a constant 25°C. Seeds stored dry in the laboratory were also stimulated to germinate by red light and alternating temperatures but only after dormancy was sufficiently decreased by low temperature stratification or by low temperature under immersion. The results are consistent with the hypothesis that primary dormancy of A. tenuifolia seeds is decreased by low temperatures in winter even if the seeds are submerged as happens when floods occur. The decrease in dormancy makes the seeds prone to be stimulated to germinate by the Pfr form of phytochrome in combination with alternating temperatures. These conditions are likely to be met in the gaps opened by the flood-caused death of dicotyledon plants.

15.
Oecologia ; 117(1-2): 1-8, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28308474

RESUMEN

Plant species from open habitats often show pronounced responses to shading. Apart from a reduction in growth, shading can lead to marked changes in morphology and architecture, and it may affect the rate of plant development. Natural shade comprises two basically different features, a reduction in light quantity (amount of radiation) and changes in the spectral light quality. The first aspect represents changes in resource availability, while the latter acts as a source of information for plants and can prompt morphogenetic responses. A greenhouse experiment was carried out to study the effects of changes in light quality and quantity on the growth, morphology and development of two stoloniferous Potentilla species. Individual plants were subjected to three light treatments: (1) full daylight (control); and two shade treatments, in which (2) light quantity (photon flux density) and (3) light spectral quality (red/far-red ratio) were changed independently. Plant development was followed throughout the study. Morphological parameters, biomass and clonal offspring production were measured at the end of the experiment. Morphological traits such as petiole length, leaf blade characteristics and investment patterns into spacers showed high degrees of shade-induced plasticity in both species. With a few exceptions, light quality mainly affected morphological variables, while production parameters were most responsive to changes in light quantity. Potentilla anserina allocated resources preferentially to established rosettes at the cost of stolon growth and branching, while in P. reptans, all parameters related to development and allocation were slowed down to the same extent by light limitation. Light quality changes also positively affected biomass production via changes in leaf allocation. Changes in the spectral light quality had major effects on the size of modular structures (leaves, ramets), whereas changes in light quantity mainly affected their numbers.

16.
Oecologia ; 100(3): 236-242, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307006

RESUMEN

We studied the effects of light quality and defoliation on the rate of phytomer appearance and axillary bud outgrowth in white clover. The treatments were applied to one phytomer, a phytomer being defined as the structural unit comprising a node, internode, axillary bud, subtending leaf and two nodal root primordia. Light of a low red:far-red (R:FR) ratio (0.27) was applied to a "target" phytomer either (i) within the apical bud and then to the axillary bud after emergence of the phytomer from the apical bud, or (ii) to the axillary bud only after emergence. The light conditions were directed to these specific parts of the plant by collimating light from small FR light-emitting diodes; with this technique we were able to change the light quality without any change in the level of photosynthetically active radiation. The subtending leaf of the target phytomer was retained or defoliated when it had emerged from the apical bud. FR light applied from the time the phytomer was within the apical bud caused a delay in branch appearance at the target phytomer. In contrast, direct treatment of the axillary bud with FR light after it had emerged from the apical bud did not result in any delay in branch appearance. As the light treatment of the apical bud may have changed the light environment of any of the organs contained in the bud we were unable to ascribe the delay in branch appearance to light perception by any particular organ. However, indirect evidence leads to the conclusion that the likely site of light perception was the developing leaf subtending the axillary bud while it was the outermost phytomer within the apical bud. These results do not support the hypothesis that the R:FR ratio of light incident at an axillary bud site is the environmental factor that controls bud development. Defoliation of the unfolding leaf reduced the rate of phytomer appearance on the main stolon but had no immediate effect on branch appearance. As a consequence there was a reduction in the number of phytomers between the stolon apical meristem and the first phytomer with a branch. This is frequently taken to indicate a relaxation of apical dominance, but in this case was found not to involve a direct effect on bud activity. A current model of white clover growth suggests that there is integration of activity between apical meristems but independence of activity and response to the local micro-environment by axillary buds. In contrast, we found that (i) defoliation reduced phytomer appearance only at the main stolon apical meristem and not at all the meristems in the plant and (ii) that a change in the local light environment of an axillary bud had no discernible effect on bud activity once the bud had emerged from the apical bud but could delay branching if applied before emergence. These results are at variance with the predictions of the model.

17.
Oecologia ; 132(2): 197-204, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28547352

RESUMEN

Light with decreased red:far-red (R:FR) ratios may signal neighbor presence and trigger plant developmental responses. There is some evidence that plant canopies forage towards increased R:FR ratios, but it is unclear to what extent R:FR versus the total amount of photosynthetically active radiation (PAR) influences canopy foraging responses among forest trees. The objective of this study was to examine the relative importance of PAR and R:FR as photosensory cues leading to tree canopy foraging responses. Seedlings of Betula papyrifera Marshall (paper birch) were grown in an experimental garden. Each seedling was germinated and grown in its own shading structure and exposed to two spatially separated light environments, in a factorial design of PAR and R:FR. Plant canopy foraging was evaluated at the end of one growing season in terms of canopy displacement, canopy area, leaf number, direction of stem lean, petiole aspect, and lamina aspect with respect to experimental light treatments. Leaf number and canopy area were greater on the high PAR sides of plants, irrespective of the R:FR treatment. Seedling canopies were displaced towards the direction of high PAR, but this relationship was not significant across all treatments. Petiole aspect was random and showed no significant directedness towards any of the light treatments. Lamina aspect and the direction of stem lean were distributed towards the direction of high PAR, irrespective of the R:FR treatment. Overall, first-year B. papyrifera seedlings used PAR, rather than R:FR ratio, as a photosensory cue for canopy light foraging.

18.
Oecologia ; 110(1): 1-9, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28307457

RESUMEN

Seedling developmental responses to understory shade combine the effects of reductions in irradiance and changes in spectral quality. We studied the seedling development of two Southeast Asian dipterocarp trees in response to differences in irradiance (photosynthetic photon flux density, PPFD) and spectral quality (red to far-red ratio, R:FR). The two species, Hopea helferei and H. odorata, are taxonomically closely related but differ in their ecological requirements; H. helferei is more drought-tolerant and typically grows in more open habitats. Seedlings were grown in six different replicated shadehouse treatments varying in percentage of solar PPFD and R:FR. The two species differed in the influence of light variables on most seedling characters, particularly for final height, internode distance, branch/trunk internodes, stem length/mass, leaf area/stem length, petiole length, and growth/mol of photons received. Most of the characters in both taxa were primarily influenced by PPFD, but spectral quality also influenced some characters - more so for H. odorata. The latter species grew more rapidly, particularly in the low PPFD treatments, and its leaves were capable of higher photosynthesis rates. However, growth in H. helferei was not reduced in direct sunlight. The growth of this taxon may be constrained by adaptations, particularly in leaves, for drought tolerance.

19.
Oecologia ; 111(4): 499-504, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28308110

RESUMEN

In plagiotropic plants, axillary buds on the stolon can be exposed to low red:far-red (R:FR) ratios, while the leaves may be positioned in the uppermost layer of the sward where they are exposed to a high R:FR ratio. We tested whether the light environment of unfolded leaves influences outgrowth of the axillary buds and the formation of nodal roots of Trifolium repens. Single plants were grown in a growth cabinet with high photosynthetic photon flux rate (PPFR) and a high R:FR ratio (FHRH, control), low PPFR and high R:FR (FLRH) or low PPFR and low R:FR (FLRL). In an additional treatment (SS), only stolons were shaded so that developing leaves grew into light conditions similar to the control treatment. Neutral shading (FLRH) had a minor effect on branching and did not influence root formation. A reduction in the R:FR ratio (FLRL) significantly delayed the outgrowth of axillary buds so that, compared to the control plants, the percentage of branched phytomers was reduced by 43% on the parent axis and by 75% on primary branches. Furthermore, the number of nodal roots per plant was reduced by about 30%. When only the stolons were shaded (SS), the percentage of branched and rooted phytomers was similar to that of the control plants. Extension of petioles and leaves was very variable, increasing the values in the FLRL treatment at least 2.5-fold compared with the control plants. It was concluded that the light environment of the unfolded leaves had a significant influence on the regulation of the outgrowth of axillary buds and that the high plasticity in petiole growth allows the positioning of the leaves in a light environment conducive to the stimulation of branch outgrowth.

20.
Front Plant Sci ; 5: 617, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520724

RESUMEN

Tillering is a core constituent of plant architecture, and influences light interception to affect plant and crop performance. Near-isogenic lines (NILs) varying for a tiller inhibition (tin) gene and representing two genetic backgrounds were investigated for tillering dynamics, organ size distribution, leaf area, light interception, red: far-red ratio, and chlorophyll content. Tillering ceased earlier in the tin lines to reduce the frequencies of later primary and secondary tillers compared to the free-tillering NILs, and demonstrated the genetically lower tillering plasticity of tin-containing lines. The distribution of organ sizes along shoots varied between NILs contrasting for tin. Internode elongation commenced at a lower phytomer, and the peduncle was shorter in the tin lines. The flag leaves of tin lines were larger, and the longest leaf blades were observed at higher phytomers in the tin than in free-tillering lines. Total leaf area was reduced in tin lines, and non-tin lines invested more leaf area at mid-canopy height. The tiller economy (ratio of seed-bearing shoots to numbers of shoots produced) was 10% greater in the tin lines (0.73-0.76) compared to the free-tillering sisters (0.62-0.63). At maximum tiller number, the red: far-red ratio (light quality stimulus that is thought to induce the cessation of tillering) at the plant-base was 0.18-0.22 in tin lines and 0.09-0.11 in free-tillering lines at levels of photosynthetic active radiation of 49-53% and 30-33%, respectively. The tin lines intercepted less radiation compared to their free-tillering sisters once genotypic differences in tiller numbers had established, and maintained green leaf area in the lower canopy later into the season. Greater light extinction coefficients (k) in tin lines prior to, but reduced k after, spike emergence indicated that differences in light interception between NILs contrasting in tin cannot be explained by leaf area alone but that geometric and optical canopy properties contributed. The careful characterization of specifically-developed NILs is refining the development of a physiology-based model for tillering to improve understanding of the value of architectural traits for use in cereal improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA