Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 250, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847861

RESUMEN

Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Oxidación-Reducción , Transducción de Señal , Respuesta de Proteína Desplegada , Humanos , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Estrés del Retículo Endoplásmico
2.
J Physiol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39216087

RESUMEN

Mechanical ventilation (MV) is used to support ventilation and pulmonary gas exchange in patients during critical illness and surgery. Although MV is a life-saving intervention for patients in respiratory failure, an unintended side-effect of MV is the rapid development of diaphragmatic atrophy and contractile dysfunction. This MV-induced diaphragmatic weakness is labelled as 'ventilator-induced diaphragm dysfunction' (VIDD). VIDD is an important clinical problem because diaphragmatic weakness is a risk factor for the failure to wean patients from MV. Indeed, the inability to remove patients from ventilator support results in prolonged hospitalization and increased morbidity and mortality. The pathogenesis of VIDD has been extensively investigated, revealing that increased mitochondrial production of reactive oxygen species within diaphragm muscle fibres promotes a cascade of redox-regulated signalling events leading to both accelerated proteolysis and depressed protein synthesis. Together, these events promote the rapid development of diaphragmatic atrophy and contractile dysfunction. This review highlights the MV-induced changes in the structure/function of diaphragm muscle and discusses the cell-signalling mechanisms responsible for the pathogenesis of VIDD. This report concludes with a discussion of potential therapeutic opportunities to prevent VIDD and suggestions for future research in this exciting field.

3.
Cancer Metastasis Rev ; 42(1): 49-85, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36701089

RESUMEN

Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Oxidación-Reducción , Antioxidantes/metabolismo , Oncogenes , Radicales Libres , Metástasis de la Neoplasia
4.
Curr Issues Mol Biol ; 46(5): 4885-4923, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38785562

RESUMEN

Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.

5.
Biochem Soc Trans ; 52(1): 269-278, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372426

RESUMEN

Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3ß (GSK3ß) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Zinc , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Zinc/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Glutatión/metabolismo
6.
Plant Cell Environ ; 47(8): 2780-2792, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38311877

RESUMEN

Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Oxidación-Reducción , Plantas , Plantas/metabolismo , Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
7.
J Exp Bot ; 75(9): 2682-2699, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243395

RESUMEN

Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.


Asunto(s)
Ácido Ascórbico , Glutatión , Plantas , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Plantas/metabolismo , Transducción de Señal , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
8.
J Exp Bot ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676562

RESUMEN

Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimising DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/ oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (.O2-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest ROS are a critical component of the feedback loops that control stem cell identity and fate and suggest that the ROS/hypoxia interface is an important "outside/ in" positional cue for plant cells, particularly in meristems.

9.
J Exp Bot ; 75(9): 2599-2603, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699987

RESUMEN

This Special Issue was assembled to mark the 25th anniversary of the proposal of the d -mannose/ l -galactose (Smirnoff-Wheeler) ascorbate biosynthesis pathway in plants ( Wheeler et al., 1998 ). The issue aims to assess the current state of knowledge and to identify outstanding questions about ascorbate metabolism and functions in plants.


Asunto(s)
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Plantas/metabolismo
10.
J Exp Biol ; 227(6)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38533673

RESUMEN

Oxygen (O2) is required for aerobic energy metabolism but can produce reactive oxygen species (ROS), which are a wide variety of oxidant molecules with a range of biological functions from causing cell damage (oxidative distress) to cell signalling (oxidative eustress). The balance between the rate and amount of ROS generated and the capacity for scavenging systems to remove them is affected by several biological and environmental factors, including oxygen availability. Ectotherms, and in particular hypoxia-tolerant ectotherms, are hypothesized to avoid oxidative damage caused by hypoxia, although it is unclear whether this translates to an increase in ecological fitness. In this Review, we highlight the differences between oxidative distress and eustress, the current mechanistic understanding of the two and how they may affect ectothermic physiology. We discuss the evidence of occurrence of oxidative damage with hypoxia in ectotherms, and that ectotherms may avoid oxidative damage through (1) high levels of antioxidant and scavenging systems and/or (2) low(ering) levels of ROS generation. We argue that the disagreements in the literature as to how hypoxia affects antioxidant enzyme activity and the variable metabolism of ectotherms makes the latter strategy more amenable to ectotherm physiology. Finally, we argue that observed changes in ROS production and oxidative status with hypoxia may be a signalling mechanism and an adaptive strategy for ectotherms encountering hypoxia.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Hipoxia , Oxígeno/metabolismo
11.
Transfus Apher Sci ; 63(3): 103929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658294

RESUMEN

Granted with a potent ability to interact with and tolerate oxidative stressors, RBCs scavenge most reactive oxygen and nitrogen species (RONS) generated in circulation. This essential non-canonical function, however, renders RBCs susceptible to damage when vascular RONS are generated in excess, making vascular redox imbalance a common etiology of anemia, and thus a common indication for transfusion. This accentuates the relevance of impairments in redox metabolism during hypothermic storage, as the exposure to chronic oxidative stressors upon transfusion could be exceedingly deleterious to stored RBCs. Herein, we review the prominent mechanisms of the hypothermic storage lesion that alter the ability of RBCs to scavenge exogenous RONS as well as the associated clinical relevance.


Asunto(s)
Conservación de la Sangre , Eritrocitos , Oxidación-Reducción , Humanos , Eritrocitos/metabolismo , Conservación de la Sangre/métodos , Transfusión de Eritrocitos/métodos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
12.
Plant J ; 111(3): 642-661, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35665548

RESUMEN

Reactive oxygen species (ROS) such as singlet oxygen, superoxide (O2●- ) and hydrogen peroxide (H2 O2 ) are the markers of living cells. Oxygenic photosynthesis produces ROS in abundance, which act as a readout of a functional electron transport system and metabolism. The concept that photosynthetic ROS production is a major driving force in chloroplast to nucleus retrograde signalling is embedded in the literature, as is the role of chloroplasts as environmental sensors. The different complexes and components of the photosynthetic electron transport chain (PETC) regulate O2●- production in relation to light energy availability and the redox state of the stromal Cys-based redox systems. All of the ROS generated in chloroplasts have the potential to act as signals and there are many sulphhydryl-containing proteins and peptides in chloroplasts that have the potential to act as H2 O2 sensors and function in signal transduction. While ROS may directly move out of the chloroplasts to other cellular compartments, ROS signalling pathways can only be triggered if appropriate ROS-sensing proteins are present at or near the site of ROS production. Chloroplast antioxidant systems serve either to propagate these signals or to remove excess ROS that cannot effectively be harnessed in signalling. The key challenge is to understand how regulated ROS delivery from the PETC to the Cys-based redox machinery is organised to transmit redox signals from the environment to the nucleus. Redox changes associated with stromal carbohydrate metabolism also play a key role in chloroplast signalling pathways.


Asunto(s)
Cloroplastos , Fotosíntesis , Cloroplastos/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
13.
Neurobiol Dis ; 185: 106255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558170

RESUMEN

Brain metabolic pathways relating to bioenergetic and redox homeostasis are closely linked, and deficits in these pathways are thought to occur in many neurodegenerative diseases. Astrocytes play important roles in both processes, and growing evidence suggests that neuron-astrocyte intercellular signalling ensures brain bioenergetic and redox homeostasis in health. Moreover, alterations to this crosstalk have been observed in the context of neurodegenerative pathology. In this review, we summarise the current understanding of how neuron-astrocyte interactions influence brain metabolism and antioxidant functions in health as well as during neurodegeneration. It is apparent that deleterious and adaptive protective responses alter brain metabolism in disease, and that knowledge of both may illuminate targets for future therapeutic interventions.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Astrocitos/metabolismo , Oxidación-Reducción , Encéfalo/metabolismo , Neuronas/metabolismo
14.
Biochem Soc Trans ; 51(3): 1169-1177, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37140269

RESUMEN

Proteostasis and redox homeostasis are tightly interconnected and most protein quality control pathways are under direct redox regulation which allow cells to immediately respond to oxidative stress conditions. The activation of ATP-independent chaperones serves as a first line of defense to counteract oxidative unfolding and aggregation of proteins. Conserved cysteine residues evolved as redox-sensitive switches which upon reversible oxidation induce substantial conformational rearrangements and the formation of chaperone-active complexes. In addition to harnessing unfolding proteins, these chaperone holdases interact with ATP-dependent chaperone systems to facilitate client refolding and restoring proteostasis during stress recovery. This minireview gives an insight into highly orchestrated mechanisms regulating the stress-specific activation and inactivation of redox-regulated chaperones and their role in cell stress responses.


Asunto(s)
Chaperonas Moleculares , Proteostasis , Humanos , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Citoplasma/metabolismo , Adenosina Trifosfato/metabolismo , Estrés Oxidativo
15.
Biogerontology ; 24(5): 771-782, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227544

RESUMEN

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors have received widespread attention because of their significant protective effects on the kidney. Previous studies have shown that Sirt1, as which is an antiaging protein, is closely related to the maintenance of redox homeostasis. The goal of this study was to determine whether empagliflozin could ameliorate D-galactose-induced renal senescence in mice, and examine the possible mechanisms of Sirt1. We constructed a rapid ageing model in mice by administering D-galactose. An ageing model was constructed by treating cells with high glucose. Treadmill and Y-maze tests were used to assess exercise tolerance and learning memory ability. Pathologically stained sections were used to assess kidney injury. Tissue and cell senescence were evaluated by senescence-associated ß-galactosidase staining. The expression levels of P16, SOD1, SOD2 and Sirt1 were detected by immunoblotting. D-gal-treated mice exhibited significant age-related changes, as measured by behavioural tests and ageing marker protein levels. empagliflozin alleviated these ageing manifestations. In addition, Sirt1, SOD1 and SOD2 levels were downregulated in model mice and upregulated by empagliflozin treatment. Empagliflozin had similar protective effects at the cellular level, and these effects were reduced by the Sirt1 inhibitor. Empagliflozin has an antiaging effect, which may be related to reducing Sirt1-mediated oxidative stress.


Asunto(s)
Galactosa , Sirtuina 1 , Ratones , Animales , Galactosa/farmacología , Sirtuina 1/metabolismo , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/farmacología , Estrés Oxidativo , Senescencia Celular , Oxidación-Reducción , Riñón/metabolismo , Glucosa/metabolismo
16.
Cell Mol Life Sci ; 79(2): 129, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35141765

RESUMEN

Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Desarrollo de la Planta/efectos de los fármacos , Plantas , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo
17.
Biochem J ; 479(7): 857-866, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35438135

RESUMEN

Regulated cell death (RCD) is an essential process that plays key roles along the plant life cycle. Unlike accidental cell death, which is an uncontrolled biological process, RCD involves integrated signaling cascades and precise molecular-mediated mechanisms that are triggered in response to specific exogenous or endogenous stimuli. Ferroptosis is a cell death pathway characterized by the iron-dependent accumulation of lipid reactive oxygen species. Although first described in animals, ferroptosis in plants shares all the main core mechanisms observed for ferroptosis in other systems. In plants as in animals, oxidant and antioxidant systems outline the process of lipid peroxidation during ferroptosis. In plants, cellular compartments such as mitochondria, chloroplasts and cytosol act cooperatively and coordinately to respond to changing redox environments. This particular context makes plants a unique model to study redox status regulation and cell death. In this review, we focus on our most recent understanding of the regulation of redox state and lipid peroxidation in plants and their role during ferroptosis.


Asunto(s)
Ferroptosis , Animales , Hierro/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
18.
Plant Cell Environ ; 45(4): 1096-1108, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040158

RESUMEN

Catalase is a well-known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2-1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2-1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non-infected plants.


Asunto(s)
Peroxisomas , Receptores Citoplasmáticos y Nucleares , Catalasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
19.
J Exp Bot ; 72(16): 5857-5875, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34111283

RESUMEN

Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Cadmio/toxicidad , Oxidación-Reducción , Plantas/genética , Estrés Fisiológico
20.
Biochem J ; 477(6): 1123-1136, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32141496

RESUMEN

Bacterial heme nitric oxide/oxygen (H-NOX) domains are nitric oxide (NO) or oxygen sensors. This activity is mediated through binding of the ligand to a heme cofactor. However, H-NOX from Vibrio cholerae (Vc H-NOX) can be easily purified in a heme-free state that is capable of reversibly responding to oxidation, suggesting a heme-independent function as a redox sensor. This occurs by oxidation of Cys residues at a zinc-binding site conserved in a subset of H-NOX homologs. Remarkably, zinc is not lost from the protein upon oxidation, although its ligation environment is significantly altered. Using a combination of computational and experimental approaches, we have characterized localized structural changes that accompany the formation of specific disulfide bonds between Cys residues upon oxidation. Furthermore, the larger-scale structural changes accompanying oxidation appear to mimic those changes observed upon NO binding to the heme-bound form. Thus, Vc H-NOX and its homologs may act as both redox and NO sensors by completely separate mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Vibrio cholerae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/fisiología , Biología Computacional/métodos , Cristalografía por Rayos X , Hemo/química , Hemo/genética , Óxido Nítrico/química , Óxido Nítrico/genética , Estructura Secundaria de Proteína , Vibrio cholerae/química , Vibrio cholerae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA