Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ecol Lett ; 27(4): e14424, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634183

RESUMEN

Species-to-species and species-to-environment interactions are key drivers of community dynamics. Disentangling these drivers in species-rich assemblages is challenging due to the high number of potentially interacting species (the 'curse of dimensionality'). We develop a process-based model that quantifies how intraspecific and interspecific interactions, and species' covarying responses to environmental fluctuations, jointly drive community dynamics. We fit the model to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. We found that fluctuating relative abundances are driven by species' heterogenous responses to environmental fluctuations, whereas interspecific interactions are negligible. Species differences in long-term average abundances are driven by interspecific variation in the magnitudes of both conspecific density-dependence and density-independent growth rates. This study introduces a novel approach to overcoming the curse of dimensionality, which reveals highly individualistic dynamics in coral reef fish communities that imply a high level of niche structure.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Peces/fisiología , Especificidad de la Especie , Factores de Tiempo , Antozoos/fisiología , Biodiversidad
2.
Proc Biol Sci ; 291(2015): 20232206, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38290546

RESUMEN

Climate-driven species redistributions are facilitated by niche modifications that increase a species's chances of establishment in novel communities. It is well understood how range-extending species adjust individual niche traits when entering novel environments, yet whether modification of ecological niche traits collectively alters the pace of range extensions or contractions remains unknown. We quantified habitat niche, abundance, physiological performance and cellular defence/damage of range-extending coral reef fishes and coexisting local temperate fishes along a 2000 km latitudinal gradient. We also assessed their dietary and behavioural niches, and establishment potential, to understand whether ecological generalism facilitates successful range extension of coral reef fishes. The coral reef fish that increased all ecological niches, showed stronger establishment, increased physiological performance and cellular damage, but decreased cellular defence at their cold-range edge, whereas tropical species that showed unmodified ecological niches showed lower establishment. One temperate species showed decreased abundance, habitat niche width and body condition, but increased cellular defence, cellular damage and energy reserves at their warm-trailing range, while other temperate species showed contrasting responses. Therefore, ecological generalists might be more successful than ecological specialists during the initial stages of climate change, with increasing future warming strengthening this pattern by physiologically benefitting tropical generalists but disadvantaging temperate specialists.


Asunto(s)
Antozoos , Ecosistema , Animales , Arrecifes de Coral , Peces/fisiología , Cambio Climático , Océanos y Mares
3.
Mol Ecol ; : e17328, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520127

RESUMEN

The environment experienced by one generation has the potential to affect the subsequent one through non-genetic inheritance of parental effects. Since both mothers and fathers can influence their offspring, questions arise regarding how the maternal, paternal and offspring experiences integrate into the resulting phenotype. We aimed to disentangle the maternal and paternal contributions to transgenerational thermal acclimation in a reef fish, Acanthochromis polyacanthus, by exposing two generations to elevated temperature (+1.5°C) in a fully factorial design and analysing the F2 hepatic gene expression. Paternal and maternal effects showed not only common but also parent-specific components, with the father having the largest influence in shaping the offspring's transcriptomic profile. Fathers contributed to transcriptional transgenerational response to warming through transfer of epigenetically controlled stress-response mechanisms while mothers influenced increased gene expression associated with lipid metabolism regulation. However, the key to acclimation potential was matching thermal experiences of the parents. When both parents were exposed to the same condition, offspring showed increased expression of genes related to structural RNA production and transcriptional regulation, whereas environmental mismatch in parents resulted in maladaptive parental condition transfer, revealed by translation suppression and endoplasmic reticulum stress. Interestingly, the offspring's own environmental experience had the smallest influence on their hepatic transcription profiles. Taken together, our results show the complex nature of the interplay among paternal, maternal and offspring cue integration, and reveal that acclimation potential to ocean warming might depend not only on maternal and paternal contributions but importantly on congruent parental thermal experiences.

4.
J Exp Biol ; 227(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38586934

RESUMEN

In many animals, ultraviolet (UV) vision guides navigation, foraging, and communication, but few studies have addressed the contribution of UV signals to colour vision, or measured UV discrimination thresholds using behavioural experiments. Here, we tested UV colour vision in an anemonefish (Amphiprion ocellaris) using a five-channel (RGB-V-UV) LED display. We first determined that the maximal sensitivity of the A. ocellaris UV cone was ∼386 nm using microspectrophotometry. Three additional cone spectral sensitivities had maxima at ∼497, 515 and ∼535 nm. We then behaviourally measured colour discrimination thresholds by training anemonefish to distinguish a coloured target pixel from grey distractor pixels of varying intensity. Thresholds were calculated for nine sets of colours with and without UV signals. Using a tetrachromatic vision model, we found that anemonefish were better (i.e. discrimination thresholds were lower) at discriminating colours when target pixels had higher UV chromatic contrast. These colours caused a greater stimulation of the UV cone relative to other cone types. These findings imply that a UV component of colour signals and cues improves their detectability, which likely increases the prominence of anemonefish body patterns for communication and the silhouette of zooplankton prey.


Asunto(s)
Visión de Colores , Perciformes , Animales , Color , Células Fotorreceptoras Retinianas Conos/fisiología , Percepción de Color/fisiología , Rayos Ultravioleta
5.
J Anim Ecol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790092

RESUMEN

Marine heatwaves (MHWs) are episodes of anomalous warming in the ocean that can last from a few days to years. MHWs have different characteristics in terms of intensity, duration and frequency and generate thermal stress in marine ecosystems. In reef ecosystems, they are one of the main causes of the decreased presence and abundance of corals, invertebrates and fish. The deleterious capacity of thermal stress often depends on biotic factors, such as the trophic control of predators on prey. Despite the evidence of thermal stress and biotic factors affecting individual species, the combined effects of both stressors on entire reef ecosystems are much less studied. Here, using a food web modelling approach, we estimated the rate of change in species' biomass due to different MHW characteristics. Specifically, we modelled the mechanistic link between species' consumption rate and seawater temperature (thermal stressor), simulating species' biomass dynamics for different MHW characteristics under different trophic control assumptions (top-down, mixed trophic control and bottom-up). We find that total reef ecosystem biomass declined by 10% ± 5% under MHWs with severe intensity and a top-down control assumption. The bottom-up control assumption moderates the total ecosystem biomass reduction by 5% ± 5%. Irrespective of the MHW characteristics and the trophic control assumption, the most substantial biomass changes occur among top, mesopredators and corals (5% to 20% ± 10%). We show that reef ecosystems where predators exert top-down control on prey are prone to suffer species abundance declines under strong MHW events. We identify food web trophic control as a crucial driver that modulates the impacts of MHWs. Overall, our results provide a unified understanding of the interplay between abiotic stressors and biotic factors in reef ecosystems under extreme thermal events, offering insights into present baselines and future ecological states for reef ecosystems.

6.
Conserv Biol ; 38(2): e14177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37668099

RESUMEN

The coastal environment is not managed in a way that considers the impact of cumulative threats, despite being subject to threats from all realms (marine, land, and atmosphere). Relationships between threats and species are often nonlinear; thus, current (linear) approaches to estimating the impact of threats may be misleading. We developed a data-driven approach to assessing cumulative impacts on ecosystems and applied it to explore nonlinear relationships between threats and a temperate reef fish community. We used data on water quality, commercial fishing, climate change, and indicators of recreational fishing and urbanization to build a cumulative threat map of the northern region in New South Wales, Australia. We used statistical models of fish abundance to quantify associations among threats and biophysical covariates and predicted where cumulative impacts are likely to have the greatest impact on fish. We also assessed the performance of no-take zones (NTZs), to protect fish from cumulative threats across 2 marine protected area networks (marine parks). Fishing had a greater impact on fish than water quality threats (i.e., percent increase above the mean for invertivores was 337% when fishing was removed and was 11% above the mean when water quality was removed inside NTZs), and fishing outside NTZs affected fish abundances inside NTZs. Quantifying the spatial influence of multiple threats enables managers to understand the multitude of management actions required to address threats.


Una estrategia basada en datos para la evaluación de impacto de múltiples estresores en un área marina protegida Resumen Los ambientes costeros no se manejan de manera que se considere el impacto de las amenazas acumulativas, a pesar de que se enfrentan a amenazas de todos los entornos (marinas, terrestres y atmosféricas). Las relaciones entre las amenazas y las especies casi siempre son no lineales; por lo tanto, las estrategias actuales (lineales) para estimar el impacto de las amenazas pueden ser engañosas. Desarrollamos una estrategia basada en datos para evaluar el impacto acumulativo sobre los ecosistemas y la aplicamos para explorar las relaciones no lineales entre las amenazas y la comunidad de peces de arrecifes templados. Usamos datos de la calidad del agua, pesca comercial, cambio climático e indicadores de pesca recreativa y urbanización para construir un mapa acumulativo de amenazas de la región norte de Nueva Gales del Sur, Australia. Usamos modelos estadísticos de la abundancia de peces para cuantificar las asociaciones entre las amenazas y las covarianzas biofísicas y pronosticamos en dónde es probable que los impactos acumulativos sean mayores sobre los peces. También evaluamos el desempeño de las zonas de veda para así proteger a los peces de las amenazas acumulativas en dos redes de áreas marinas protegidas (parques marinos). La pesca tuvo un mayor impacto que la calidad del agua sobre los peces (es decir, el incremento del porcentaje por encima de la media de depredadores de invertebrados fue de 337% cuando se eliminó la pesca y fue de 11% por encima de la media cuando se eliminó la calidad del agua dentro de las zonas de veda) y la pesca fuera de las zonas de veda afectó la abundancia de los peces dentro de ellas. La cuantificación de la influencia espacial de las múltiples amenazas permite que los gestores entiendan la multitud de acciones de manejo que se requieren para abordar las amenazas.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Explotaciones Pesqueras , Caza , Australia , Peces
7.
J Hered ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651326

RESUMEN

Sea surface temperatures are rising at unprecedented rates, leading to a progressive degradation of complex habitats formed by coral reefs. In parallel, acute thermal stress can lead to physiological challenges for ectotherms that inhabit coral reefs, including fishes. Warming and habitat simplification could push marine fishes beyond their physiological limits in the near future. Specifically, questions remain on how warming and habitat structure influence the brain of marine fishes. Here we evaluated how thermal stress and habitat loss are acting independently and synergistically as stressors in a damselfish of the Western Atlantic, Abudefduf saxatilis. For this experiment, 40 individuals were exposed to different combinations of temperature (27°C or 31°C) and habitat complexity (complex vs simple) for 10 days, and changes in brain gene expression and oxidative stress of liver and muscle were evaluated. The results indicate that warming resulted in increased oxidative damage in the liver (p=0.007) and changes in gene expression of the brain including genes associated with neurotransmission, immune function, and tissue repair. Individuals from simplified habitats showed higher numbers of differentially expressed genes, and changes for genes associated with synaptic plasticity and spatial memory. In addition, a reference transcriptome of A. saxatilis is presented here for the first time, serving as a resource for future molecular studies. This project enhances our understanding of how fishes are responding to the combination of coral reef degradation and thermal stress, while elucidating the plastic mechanisms that will enable generalists to persist in a changing world.

8.
Brain Behav Evol ; : 1-13, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865991

RESUMEN

INTRODUCTION: Comparative studies of brain anatomy between closely related species have been very useful in demonstrating selective changes in brain structure. Within-species comparisons can be particularly useful for identifying changes in brain structure caused by contrasting environmental selection pressures. Here, we aimed to understand whether differences within and between species in habitat use and foraging behaviour influence brain morphology, on both ecological and evolutionary time scales. METHODS: We used as a study model three species of the Elacatinus genus that differ in their habitat-foraging mode. The obligatory cleaning goby Elacatinus evelynae inhabits mainly corals and feeds mostly on ectoparasites removed from larger fish during cleaning interactions. In contrast, the obligatory sponge-dwelling goby Elacatinus chancei inhabits tubular sponges and feeds on microinvertebrates buried in the sponges' tissues. Finally, in the facultatively cleaning goby Elacatinus prochilos, individuals can adopt either phenotype, the cleaning or the sponge-dwelling habitat-foraging mode. By comparing the brains of the facultative goby phenotypes to the brains of the obligatory species we can test whether brain morphology is better predicted by phylogenetic relatedness or the habitat-foraging modes (cleaning × sponge dwelling). RESULTS: We found that E. prochilos brains from both types (cleaning and sponge dwelling) were highly similar to each other. Their brains were in general more similar to the brains of the most closely related species, E. evelynae (obligatory cleaning species), than to the brains of E. chancei (sponge-dwelling species). In contrast, we found significant brain structure differences between the cleaning species (E. evelynae and E. prochilos) and the sponge-dwelling species (E. chancei). These differences revealed independent changes in functionally correlated brain areas that might be ecologically adaptive. E. evelynae and E. prochilos had a relatively larger visual input processing brain axis and a relatively smaller lateral line input processing brain axis than E. chancei. CONCLUSION: The similar brain morphology of the two types of E. prochilos corroborates other studies showing that individuals of both types can be highly plastic in their social and foraging behaviours. Our results in the Elacatinus species suggest that morphological adaptations of the brain are likely to be found in specialists whereas species that are more flexible in their habitat may only show behavioural plasticity without showing anatomical differences.

9.
J Fish Biol ; 104(1): 184-205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37779354

RESUMEN

The Gorgeous goby Lythrypnus pulchellus shows extreme sexual plasticity with the bidirectional sex-change ability socially controlled in adults. Therefore, this study describes how the hierarchical status affects hormone synthesis through newborn hormone waste products in water and tests the influence of body size and social dominance establishment in sex reversal duration and direction. The associated changes in behavior and hormone levels are described under laboratory conditions in male-male and female-female pairs of similar and different body sizes, recording the changes until spawning. The status establishment occurred in a relatively shorter time period in male and female pairs of different sizes (1-3 days) compared to those of similar size (3-5 days), but the earlier one did not significantly affect the overall time of sex change (verified by pair spawning). The changes in gonads, hormones, and papilla occurred in sex-changer individuals, but the first one was observed in behavior. Courtship started at 3-5 days in male pairs and from 2 h to 1 day in female pairs of both groups of different and similar sizes. Hormones did not gradually move in the new sexual phenotype direction during the sex-change time course. Nonetheless, estradiol regulated sex change and 11-ketotestosterone enabled bidirectional sex change and was modulated by agonistic interactions. Cortisol is associated with status and gonadal sex change. In general, similar mechanisms underlie sex change in both directions with a temporal change sequence in phases. These results shed new light on sex-change mechanisms. Further studies should be performed to determine whether these localized changes exist in the steroid hormone synthesis along the brain-pituitary gonad axis during social and bidirectional sex changes in L. pulchellus.


Asunto(s)
Perciformes , Humanos , Masculino , Femenino , Animales , Perciformes/fisiología , Hormonas Esteroides Gonadales , Encéfalo , Conducta Social , Estradiol
10.
J Fish Biol ; 104(5): 1411-1422, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351593

RESUMEN

The age and daily growth of fish are registered through the deposition of increments in their otoliths, which are concretions formed by the precipitation of substances present in the endolymphatic fluid, mainly calcium carbonate (CaCO3). Faced with the need to fill some of the gaps in the knowledge on the occurrence and duration of the initial stages of snapper species' life cycles in the Abrolhos Bank, this study aimed to describe the growth rates, age, and period of pelagic larval duration (PLD) of three snapper species during the larval pre-settlement phase, in the Abrolhos Bank region. The post-larvae were captured using light traps. Otoliths were removed from 117 samples of snapper species; however, only 69 were viable for age estimation, of which 15 were Lutjanus analis, 25 were Lutjanus jocu, and 29 were Lutjanus synagris. Together, the samples presented individuals with total lengths ranging from 16.14 to 24.76 mm and ages from 21 to 39 days. Settlement marks were found for all three species, and the average PLD was ~25 days. The somatic growth of the snapper species was positively correlated with otolith growth. L. jocu presented the greatest daily growth compared to the other species. The three species use the Abrolhos Bank as a larval settlement site, demonstrating plasticity by using different habitats throughout their lives.


Asunto(s)
Larva , Membrana Otolítica , Animales , Larva/crecimiento & desarrollo , Membrana Otolítica/crecimiento & desarrollo , Membrana Otolítica/química , Perciformes/crecimiento & desarrollo , Parques Recreativos , Percas/crecimiento & desarrollo , Percas/fisiología
11.
J Environ Manage ; 351: 119656, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042082

RESUMEN

Anthropogenic actions have direct and indirect impacts on natural systems, leading to significant alterations in marine ecosystems worldwide. One of the most notable problems is species loss, as the disappearance of species from an area can compromise ecological functions. This is at the core of a severe biodiversity crisis. To address and reverse these processes, marine protected areas (MPAs) have been utilized as a crucial tool to mitigate species loss, increase biomass, and serve as a fisheries management tool. However, there is a lack of information assessing MPAs from the perspective of their contribution to maintaining ecological functions. In recent decades, functional diversity (FD) indices have been widely used to assess ecosystem functioning. In this paper, we conducted an assessment using a global database of reef fish abundance to analyze the effect of No-Take Zones (NTZ) on the FD and "true" diversity (TD) indices of tropical reef fish assemblages in seven tropical biogeographic regions. We found a significant protective effect for some indices, although these responses were dependent on the bioregion. At the bioregional level, NTZs included lower numbers of species and functional entities than open access areas. Consequently, the functional richness protected within these zones partially represented the functional diversity in each biogeographic province. However, smaller-scale functional diversity indices responded to NTZ protection depending on the bioregion. Therefore, these results reinforce that the assessed NTZs are responsive to the protection of functional diversity, although they are not sufficient for safeguarding ecosystem functions in tropical reefs. This highlights the importance of expanding the number of protection entities worldwide with management strategies focused on coral reef fish functionality, as well as effective local/regional assessments. Thus, a new paradigm is necessary in the planning and creation of MPAs to safeguard ecosystem functions, with a priority given to the protection of ecosystem functions and habitats.


Asunto(s)
Antozoos , Arrecifes de Coral , Nitrocompuestos , Tiazoles , Animales , Ecosistema , Conservación de los Recursos Naturales , Peces/fisiología , Biodiversidad
12.
Proc Biol Sci ; 290(2011): 20231749, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37989239

RESUMEN

Most vertebrates have one layer of the dim-light active rod photoreceptors. However, multiple rod layers, known as a multibank retina, can be found in over 100 species of fish, including several deep-sea species and one family of nocturnally active reef fish, the Holocentridae. Although seemingly associated with increased photon catch, the function of multibank retinas remained unknown. We used an integrative approach, combining histology, electrophysiology and amino acid sequence analysis, applied to three species of nocturnal reef fishes, two holocentrids with a multibank retina (Neoniphon sammara and Myripristis violacea) and an apogonid with a single rod bank (Ostorhinchus compressus), to determine the sensory advantage of multiple rod layers. Our results showed that fish with multibank retinas have both faster vision and enhanced responses to bright- and dim-light intensities. Faster vision was indicated by higher flicker fusion frequencies during temporal resolution electroretinography as well as faster retinal release rates estimated from their rhodopsin proteins. Enhanced sensitivity was demonstrated by broadened intensity-response curves derived from luminous sensitivity electroretinography. Overall, our findings provide the first functional evidence for enhanced dim-light sensitivity using a multibank retina while also suggesting novel roles for the adaptation in enhancing bright-light sensitivity and the speed of vision.


Asunto(s)
Fotofobia , Visión Ocular , Animales , Retina/fisiología , Peces/fisiología , Luz
13.
Mol Ecol ; 32(7): 1656-1672, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36560895

RESUMEN

Coral reef fishes are diverse in ecology and behaviour and show remarkable colour variability. Investigating the visual pigment gene (opsin) expression in these fishes makes it possible to associate their visual genotype and phenotype (spectral sensitivities) to visual tasks, such as feeding strategy or conspecific detection. By studying all major damselfish clades (Pomacentridae) and representatives from five other coral reef fish families, we show that the long-wavelength-sensitive (lws) opsin is highly expressed in algivorous and less or not expressed in zooplanktivorous species. Lws is also upregulated in species with orange/red colours (reflectance >520 nm) and expression is highest in orange/red-coloured algivores. Visual models from the perspective of a typical damselfish indicate that sensitivity to longer wavelengths does enhance the ability to detect the red to far-red component of algae and orange/red-coloured conspecifics, possibly enabling social signalling. Character state reconstructions indicate that in the early evolutionary history of damselfishes, there was no lws expression and no orange/red coloration. Omnivory was most often the dominant state. Although herbivory was sometimes dominant, zooplanktivory was never dominant. Sensitivity to long wavelength (increased lws expression) only emerged in association with algivory but never with zooplanktivory. Higher lws expression is also exploited by social signalling in orange/red, which emerged after the transition to algivory. Although the relative timing of traits may deviate by different reconstructions and alternative explanations are possible, our results are consistent with sensory bias whereby social signals evolve as a correlated response to natural selection on sensory system properties in other contexts.


Asunto(s)
Arrecifes de Coral , Peces , Animales , Peces/genética , Opsinas/genética , Opsinas/metabolismo , Expresión Génica , Comunicación
14.
Mar Drugs ; 22(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38248639

RESUMEN

Ciguatoxins (CTXs), potent neurotoxins produced by dinoflagellates of the genera Gambierdiscus and Fukuyoa, accumulate in commonly consumed fish species, causing human ciguatera poisoning. Field collections of Pacific reef fish reveal that consumed CTXs undergo oxidative biotransformations, resulting in numerous, often toxified analogs. Following our study showing rapid CTX accumulation in flesh of an herbivorous fish, we used the same laboratory model to examine the tissue distribution and metabolization of Pacific CTXs following long-term dietary exposure. Naso brevirostris consumed cells of Gambierdiscus polynesiensis in a gel food matrix over 16 weeks at a constant dose rate of 0.36 ng CTX3C equiv g-1 fish d-1. CTX toxicity determination of fish tissues showed CTX activity in all tissues of exposed fish (eight tissues plus the carcass), with the highest concentrations in the spleen. Muscle tissue retained the largest proportion of CTXs, with 44% of the total tissue burden. Moreover, relative to our previous study, we found that larger fish with slower growth rates assimilated a higher proportion of ingested toxin in their flesh (13% vs. 2%). Analysis of muscle extracts revealed the presence of CTX3C and CTX3B as well as a biotransformed product showing the m/z transitions of 2,3-dihydroxyCTX3C. This is the first experimental evidence of oxidative transformation of an algal CTX in a model consumer and known vector of CTX into the fish food web. These findings that the flesh intended for human consumption carries the majority of the toxin load, and that growth rates can influence the relationship between exposure and accumulation, have significant implications in risk assessment and the development of regulatory measures aimed at ensuring seafood safety.


Asunto(s)
Ciguatoxinas , Dinoflagelados , Animales , Humanos , Ciguatoxinas/toxicidad , Distribución Tisular , Exposición Dietética , Peces
15.
J Fish Biol ; 103(6): 1445-1451, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37667092

RESUMEN

Fusiliers of the family Caesionidae comprise a group of Indo-Pacific reef fishes important in the live bait and artisanal fisheries in many parts of its range, particularly in the Indian Ocean region. Using newly generated mitochondrial COI sequences of 10 species of caesionid fishes from the Laccadive archipelago, we carried out a molecular phylogenetic analysis, which has helped improve our understanding of the diversity, distribution, and systematics of this poorly known group of fishes. The two speciose genera within Caesionidae, Caesio and Pterocaesio, were revealed to be paraphyletic, and as a result, four names earlier considered as subgenera within Caesionidae (Flavicaesio, Odontonectes, Pisinnicaesio, and Squamosicaesio) were elevated to the status of distinct genera. We also discovered the presence of a new lineage in the Central Indian Ocean, sister to Caesio caerulaurea and Caesio xanthalytos, but distinct from both in several morphological characters and a genetic distance of between 2% and 3% in the mitochondrial COI gene. We describe this lineage as Caesio idreesi, a new species, with a distribution spanning the Laccadive Sea and the Bay of Bengal. Our genetic data also helped confirm the first confirmed records of two species, Pisinnicaesio digramma and Squamosicaesio randalli, from the Central Indian Ocean, and a new distribution record for C. xanthalytos in the Laccadive Sea. Combined, these results have helped bridge key biodiversity knowledge gaps of the family Caesionidae and form an excellent baseline for further investigations on their taxonomy, systematics, and life history.


Asunto(s)
Peces , Mitocondrias , Animales , Filogenia , Océano Índico , Peces/genética , Mitocondrias/genética , Genes Mitocondriales , Océano Pacífico
16.
J Environ Manage ; 344: 118491, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390579

RESUMEN

The rise of nature-based tourism has provided a new avenue for disturbing animal behaviour, especially in protected areas. One of the most important tourism sectors in aquatic environments is scuba diving, an activity considered sustainable given its non-extractive nature and capability of bringing relevant socio-economic benefits to local communities. However, knowledge about its impact on the activity patterns of aquatic animals is still scarce. Here, we used biotelemetry techniques to assess the importance of scuba diving in modulating the activity patterns of the dusky grouper (Epinephelus marginatus, Lowe, 1834), a marine predatory fish of high interest for fishing and tourism. We implemented Hidden Markov Models (HMMs) on high-resolution acceleration data using a temporal and spatial control while controlling for a set of environmental variables (i.e. photoperiod, time-of-day, moon phase, temperature, wave height, and intensity and direction of marine currents) within a multiple-use marine protected area, and diving tourism hot-spot, of the western Mediterranean Sea. Our results underlined the more decisive influence of environmental-related stressors on the activity patterns of the dusky grouper compared to the impact of scuba diving. A high heterogeneity existed in the response against most of the stressors, including the presence of scuba divers. Overall, the activity of dusky grouper was higher at night than at day, showing a positive relationship with wave height, water temperature, and current intensity and a negative one with the moon phase. Remarkably, our findings, based on novel biotelemetry tools, differed substantially from the common wisdom accepted for this species. In conclusion, there is no clear evidence of scuba divers influence on the general activity patterns of the dusky grouper. Beyond their relevance from an ecological perspective, these results provide useful insights for the sustainable management of coastal resources, suggesting that scuba diving, when properly carried out, can represent an important sector to foster for the blue growth of coastal communities.


Asunto(s)
Buceo , Animales , Turismo , Conducta Animal , Temperatura , Mar Mediterráneo
17.
Reg Environ Change ; 23(1): 16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36573171

RESUMEN

During the first COVID-19 lockdown in 2020, levels of coastal activities such as subsistence fishing and marine tourism declined rapidly throughout French Polynesia. Here, we examined whether the reduction in coastal use led to changes in fish density around the island of Moorea. Two natural coastal marine habitats (bare sand and mangrove) and one type of man-made coastal structure (embankment) were monitored on the west coast of the island before and after the first COVID-19 lockdown. At the end of the lockdown (May 2020), significantly higher apparent densities of juvenile and adult fish, including many harvested species, were recorded compared to levels documented in 2019 at the same period (April 2019). Fish densities subsequently declined as coastal activities recovered; however, 2 months after the end of the lockdown (July 2020), densities were still higher than they were in July 2019 with significant family-specific variation across habitats. This study highlights that short-term reductions in human activity can have a positive impact on coastal fish communities and may encourage future management policy that minimizes human impacts on coastline habitats. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-022-02011-0.

18.
Am Nat ; 199(4): 455-467, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324374

RESUMEN

AbstractSupply and demand affect the values of goods exchanged in cooperative trades. Studies of humans and other species typically describe the standard scenario that an increase in demand leads to a higher price. Here, we challenge the generality of that logic with empirical data and a theoretical model. In our study system, "client" fishes visit cleaner wrasse (Labroides dimidiatus) to have ectoparasites removed, but cleaners prefer client mucus, which constitutes "cheating." We removed 31 of 65 preselected cleaners from a large isolated reef patch. We compared cleaner-client interactions at the reef and a control reef before removal and 4 weeks after removal. Cleaner fish from the experimental treatment site interacted more frequently with large clients (typically visitors with access to alternative cleaning stations), but we did not observe any changes in service quality measures. A game-theoretic analysis revealed that interaction duration and service quality might increase, decrease, or remain unchanged depending on the precise relationships between key parameters, such as the marginal benefits of cheating as a function of satiation or the likelihood of clients responding to cheating as a function of market conditions. The analyses show that the principle of diminishing return may affect exchanges in ways not predicted by supply-to-demand ratios.


Asunto(s)
Perciformes , Simbiosis , Animales , Peces , Humanos , Lógica
19.
Proc Biol Sci ; 289(1973): 20220162, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35440210

RESUMEN

Increasing speed and magnitude of global change threaten the world's biodiversity and particularly coral reef fishes. A better understanding of large-scale patterns and processes on coral reefs is essential to prevent fish biodiversity decline but it requires new monitoring approaches. Here, we use environmental DNA metabarcoding to reconstruct well-known patterns of fish biodiversity on coral reefs and uncover hidden patterns on these highly diverse and threatened ecosystems. We analysed 226 environmental DNA (eDNA) seawater samples from 100 stations in five tropical regions (Caribbean, Central and Southwest Pacific, Coral Triangle and Western Indian Ocean) and compared those to 2047 underwater visual censuses from the Reef Life Survey in 1224 stations. Environmental DNA reveals a higher (16%) fish biodiversity, with 2650 taxa, and 25% more families than underwater visual surveys. By identifying more pelagic, reef-associated and crypto-benthic species, eDNA offers a fresh view on assembly rules across spatial scales. Nevertheless, the reef life survey identified more species than eDNA in 47 shared families, which can be due to incomplete sequence assignment, possibly combined with incomplete detection in the environment, for some species. Combining eDNA metabarcoding and extensive visual census offers novel insights on the spatial organization of the richest marine ecosystems.


Asunto(s)
Arrecifes de Coral , ADN Ambiental , Animales , Biodiversidad , Ecosistema , Peces , Humanos
20.
Conserv Biol ; 36(3): e13866, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34811801

RESUMEN

Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.


Grupos de Atributos como Entidades de Manejo en una Pesquería de Arrecife Compleja y Multiespecie Resumen Los estresantes localizados agravan la continua declinación de los arrecifes de coral causada por el clima, lo que requiere que los administradores de recursos naturales trabajen con paradigmas en constante cambio. El manejo adaptativo basado en caracteres (TBAM, en inglés) es un marco de trabajo nuevo que ayuda a enfrentar las condiciones cambiantes mediante la selección e implementación de acciones de manejo específicas para grupos de especies que comparten atributos, vulnerabilidades y respuestas al manejo esenciales. En el TBAM, el mantenimiento de los ecosistemas funcionales está balanceado con el suministro para la subsistencia humana. Identificamos mediante un agrupamiento jerárquico los grupos basados en atributos de peces para la alimentación en un arrecife de coral del Pacífico. Al plantear que los grupos basados en atributos que desempeñan funciones comparables responden similarmente a los estresantes y las acciones de manejo, determinamos los impulsores biofísicos y socioeconómicos de la biomasa de un grupo de atributos y evaluamos sus vulnerabilidades mediante modelos aditivos generalizados. Identificamos siete grupos de atributos a partir de 131 especies. Los grupos respondieron a diferentes impulsores y desplegaron vulnerabilidades divergentes; las actividades humanas aparecieron como predictores importantes de la estructuración de la comunidad. La biomasa de las especies solitarias asociadas al arrecife incrementó con la distancia desde puertos importantes de pesca y los piscívoros solitarios de gran tamaño exhibieron una declinación en la biomasa junto con la distancia desde un puerto. La biomasa de los grupos también varió en respuesta a los diferentes tipos de hábitat, la presencia o ausencia reportada de actividad pesquera con dinamita y la exposición a la energía del oleaje. Las vulnerabilidades diferenciales de los grupos de atributos revelaron cómo la estructura de la comunidad de peces para la alimentación está impulsada por aspectos diferentes del uso de recursos y del hábitat. Esta variabilidad inherente en las respuestas de los grupos basados en atributos presenta la oportunidad de aplicar estrategias selectivas de manejo basado en atributos en las pesquerías complejas y multiespecie. Este enfoque puede ajustarse abiertamente para adaptarse a los contextos y las prioridades locales.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Biomasa , Conservación de los Recursos Naturales , Arrecifes de Coral , Peces
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA