Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 151, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38418942

RESUMEN

BACKGROUND: Cannabis is a historically, culturally, and economically significant crop in human societies, owing to its versatile applications in both industry and medicine. Over many years, native cannabis populations have acclimated to the various environments found throughout Iran, resulting in rich genetic and phenotypic diversity. Examining phenotypic diversity within and between indigenous populations is crucial for effective plant breeding programs. This study aimed to classify indigenous cannabis populations in Iran to meet the needs of breeders and breeding programs in developing new cultivars. RESULTS: Here, we assessed phenotypic diversity in 25 indigenous populations based on 12 phenological and 14 morphological traits in male and female plants. The extent of heritability for each parameter was estimated in both genders, and relationships between quantitative and time-based traits were explored. Principal component analysis (PCA) identified traits influencing population distinctions. Overall, populations were broadly classified into early, medium, and late flowering groups. The highest extent of heritability of phenological traits was found in Start Flower Formation Time in Individuals (SFFI) for females (0.91) Flowering Time 50% in Individuals (50% of bracts formed) (FT50I) for males (0.98). Populations IR7385 and IR2845 exhibited the highest commercial index (60%). Among male plants, the highest extent of Relative Growth Rate (RGR) was observed in the IR2845 population (0.122 g.g- 1.day- 1). Finally, populations were clustered into seven groups according to the morphological traits in female and male plants. CONCLUSIONS: Overall, significant phenotypic diversity was observed among indigenous populations, emphasizing the potential for various applications. Early-flowering populations, with their high RGR and Harvest Index (HI), were found as promising options for inclusion in breeding programs. The findings provide valuable insights into harnessing the genetic diversity of indigenous cannabis for diverse purposes.


Asunto(s)
Cannabis , Humanos , Femenino , Masculino , Cannabis/genética , Irán , Fitomejoramiento , Fenotipo , Reproducción
2.
New Phytol ; 243(1): 82-97, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666344

RESUMEN

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.


Asunto(s)
Cambio Climático , Eucalyptus , Hojas de la Planta , Especificidad de la Especie , Eucalyptus/fisiología , Eucalyptus/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Temperatura , Plantones/crecimiento & desarrollo , Plantones/fisiología , Aclimatación/fisiología , Australia , Geografía
3.
Ann Bot ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980751

RESUMEN

BACKGROUND AND AIMS: Five species of cotton (Gossypium) were exposed to 38°C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (G. australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS: Plants were grown at daytime maxima of 30°C or 38°C for 25 d, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, as well as electron transport rates (ETR) and carboxylation efficiency (CE) in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape were quantified), along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS: Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38°C than at 30°C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and leaf numbers both contributed to these contrasting growth responses, with fewer, smaller leaves at 38°C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced ETR and CE in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Similarly, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS: These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38°C.

4.
Am J Bot ; 111(4): e16317, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38634444

RESUMEN

PREMISE: With the global atmospheric CO2 concentration on the rise, developing crops that can thrive in elevated CO2 has become paramount. We investigated the potential of hybridization as a strategy for creating crops with improved growth in predicted elevated atmospheric CO2. METHODS: We grew parent accessions and their F1 hybrids of Arabidopsis thaliana in ambient and elevated atmospheric CO2 and analyzed numerous growth traits to assess their productivity and underlying mechanisms. RESULTS: The heterotic increase in total dry mass, relative growth rate and leaf net assimilation rate was significantly greater in elevated CO2 than in ambient CO2. The CO2 response of net assimilation rate was positively correlated with the CO2 response of leaf nitrogen productivity and with that of leaf traits such as leaf size and thickness, suggesting that hybridization-induced changes in leaf traits greatly affected the improved performance in elevated CO2. CONCLUSIONS: Vegetative growth of hybrids seems to be enhanced in elevated CO2 due to improved photosynthetic nitrogen-use efficiency compared with parents. The results suggest that hybrid crops should be well-suited for future conditions, but hybrid weeds may also be more competitive.


Asunto(s)
Arabidopsis , Atmósfera , Dióxido de Carbono , Hibridación Genética , Nitrógeno , Hojas de la Planta , Dióxido de Carbono/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nitrógeno/metabolismo , Atmósfera/química , Fotosíntesis , Vigor Híbrido
5.
Ecol Lett ; 26(12): 2098-2109, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847674

RESUMEN

We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.


Asunto(s)
Sequías , Clima Tropical , Humanos , Bosques , Árboles/fisiología , Madera , Hojas de la Planta
6.
J Biol Phys ; 49(2): 195-234, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947291

RESUMEN

Growth curve models play an instrumental role in quantifying the growth of biological processes and have immense practical applications across all disciplines. The most popular growth metric to capture the species fitness is the "Relative Growth Rate" in this domain. The different growth laws, such as exponential, logistic, Gompertz, power, and generalized Gompertz or generalized logistic, can be characterized based on the monotonic behavior of the relative growth rate (RGR) to size or time. Thus, in this case, species fitness can be determined truly through RGR. However, in nature, RGR is often non-monotonic and specifically bell-shaped, especially in the situation when a species is adapting to a new environment [1]. In this case, species may experience with the same fitness (RGR) for two different time points. The species precise growth and maturity status cannot be determined from this RGR function. The instantaneous maturity rate (IMR), as proposed by [2], helps to determine the correct maturity status of the species. Nevertheless, the metric IMR suffers from severe drawbacks; (i) IMR is intractable for all non-integer values of a specific parameter. (ii) The measure depends on a model parameter. The mathematical expression of IMR possesses the term "carrying capacity" which is unknown to the experimenter. (iii) Note that for identifying the precise growth status of a species, it is also necessary to understand its response when the populations are deflected from their equilibrium position at carrying capacity. This is an established concept in population biology, popularly known as the return rate. However, IMR does not provide information on the species deflection rate at the steady state. Hence, we propose a new growth measure connected with the species return rate, termed the "reverse of relative of relative growth rate" (henceforth, RRRGR), which is treated as a proxy for the IMR, having similar mathematical properties. Finally, we introduce a stochastic RRRGR model for specifying precise species growth and status of maturity. We illustrate the model through numerical simulations and real fish data. We believe that this study would be helpful for fishery biologists in regulating the favorable conditions of growth so that the species can reach a steady state with optimum effort.


Asunto(s)
Crecimiento y Desarrollo , Modelos Biológicos , Animales
7.
Plant Mol Biol ; 110(4-5): 333-345, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35397102

RESUMEN

KEY MESSAGE: Using the whole genome and growth data of Arabidopsis thaliana ecotypes, we identified two genes associated with enhancement of the growth rate in response to elevated CO2 conditions. Improving plant growth under elevated CO2 conditions may contribute to enhanced agricultural yield under future global climate change. In this study, we examined the genes implicated in the enhancement of growth rates under elevated CO2 conditions by analyzing the growth rates of Arabidopsis thaliana ecotypes originating from various latitudes and altitudes throughout the world. We also performed a genome-wide association study and a transcriptome study to identify single nucleic polymorphisms that were correlated with the relative growth rate (RGR) under elevated CO2 conditions or with CO2 response of RGR. We then selected 43 candidate genes and generated their overexpression and/or RNA interference (RNAi) transgenic mutants for screening. After screening, we have found that RNAi lines of AT3G4000 and AT5G50900 showed significantly higher growth rates under the elevated CO2 condition. As per our findings, we conclude that natural variation includes genetic variation associated with the enhancement of plant productivity under elevated CO2 conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Dióxido de Carbono , Estudio de Asociación del Genoma Completo , Proteínas de Arabidopsis/genética , Desarrollo de la Planta
8.
New Phytol ; 236(2): 413-432, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811421

RESUMEN

Ecophysiologists have reported a range of relationships, including intrinsic trade-offs across and within species between plant relative growth rate in high resource conditions (RGR) vs adaptation to tolerate cold or arid climates, arising from trait-based mechanisms. Few studies have considered ecotypes within a species, in which the lack of a trade-off would contribute to a wide species range and resilience to climate change. For 15 ecotypes of Arabidopsis thaliana in a common garden we tested for associations between RGR vs adaptation to cold or dry native climates and assessed hypotheses for its mediation by 15 functional traits. Ecotypes native to warmer, drier climates had higher leaf density, leaf mass per area, root mass fraction, nitrogen per leaf area and carbon isotope ratio, and lower osmotic potential at full turgor. Relative growth rate was statistically independent of the climate of the ecotype native range and of individual functional traits. The decoupling of RGR and cold or drought adaptation in Arabidopsis is consistent with multiple stress resistance and avoidance mechanisms for ecotypic climate adaptation and would contribute to the species' wide geographic range and resilience as the climate changes.


Asunto(s)
Arabidopsis , Adaptación Fisiológica , Isótopos de Carbono , Ecotipo , Nitrógeno , Hojas de la Planta
9.
New Phytol ; 233(2): 995-1010, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726792

RESUMEN

Growth rates vary widely among plants with different strategies. For crops, evolution under predictable and high-resource environments might favour rapid resource acquisition and growth, but whether this strategy has consistently evolved during domestication and improvement remains unclear. Here we report a comprehensive study of the evolution of growth rates based on comparisons among wild, landrace, and improved accessions of 19 herbaceous crops grown under common conditions. We also examined the underlying growth components and the influence of crop origin and history on growth evolution. Domestication and improvement did not affect growth consistently, that is growth rates increased or decreased or remained unchanged in different crops. Crops selected for fruits increased the physiological component of growth (net assimilation rate), whereas leaf and seed crops showed larger domestication effects on morphology (leaf mass ratio and specific leaf area). Moreover, climate and phylogeny contributed to explaining the effects of domestication and changes in growth. Crop-specific responses to domestication and improvement suggest that selection for high yield has not consistently changed growth rates. The trade-offs between morpho-physiological traits and the distinct origins and histories of crops accounted for the variability in growth changes. These findings have far-reaching implications for our understanding of crop performance and adaptation.


Asunto(s)
Productos Agrícolas , Domesticación , Productos Agrícolas/fisiología , Frutas , Fenotipo , Filogenia
10.
J Exp Bot ; 73(13): 4562-4575, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35298628

RESUMEN

The data available so far indicate that the photosynthetic and relative growth rates of bryophytes are 10% of those reported for tracheophytes. By examining the existing literature and reanalysing data published in over 100 studies, this review examines the ecophysiological, biochemical, and structural reasons behind this phenomenon. The limiting Rubisco content and surface for gas exchange are the internal factors that can explain the low photosynthetic and growth rates of bryophytes. The role of the thicker cell walls of bryophytes in limiting CO2 diffusion is unclear, due to the current uncertainties regarding their porosity and permeability to CO2. From this review, it is also evident that, despite bryophytes having low photosynthetic rates, their positive carbon balance is tightly related to their capacity to deal with extreme conditions. Contributing factors include their capacity to deal with large daily temperature oscillations, and their capacity to delay the cessation of photosynthesis under water deficit (or to tolerate desiccation in extreme situations). Although further studies on bryophytes are needed before more solid conclusions can be drawn, it seems that their success relies on their remarkable tolerance to a highly variable environment, possibly at the expense of their maximum photosynthetic rate.


Asunto(s)
Briófitas , Carbono , Briófitas/metabolismo , Dióxido de Carbono , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
11.
Ann Bot ; 129(5): 583-592, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35136940

RESUMEN

BACKGROUND AND AIMS: Nitrogen is often regarded as a limiting factor to plant growth in various ecosystems. Understanding how nitrogen drives plant growth has numerous theoretical and practical applications in agriculture and ecology. In 2004, Göran I. Ågren proposed a mechanistic model of plant growth from a biochemical perspective. However, neglecting respiration and assuming stable and balanced growth made the model unrealistic for plants growing in natural conditions. The aim of the present paper is to extend Ågren's model to overcome these limitations. METHODS: We improved Ågren's model by incorporating the respiratory process and replacing the stable and balanced growth assumption with a three-parameter power function to describe the relationship between nitrogen concentration (Nc) and biomass. The new model was evaluated based on published data from three studies on corn (Zea mays) growth. KEY RESULTS: Remarkably, the mechanistic growth model derived in this study is mathematically equivalent to the classical Richards model, which is the most widely used empirical growth model. The model agrees well with empirical plant growth data. CONCLUSIONS: Our model provides a mechanistic interpretation of how nitrogen drives plant growth. It is very robust in predicting growth curves and the relationship between Nc and relative growth rate.


Asunto(s)
Ecosistema , Nitrógeno , Biomasa , Desarrollo de la Planta , Plantas , Zea mays
12.
Ann Bot ; 129(1): 29-36, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34543399

RESUMEN

BACKGROUND AND AIMS: In 2019, Daou and Shipley produced an operational definition of 'generalized' soil fertility (FG) for plant community ecology and quantified FG using a structural equation model (SEM) invoking a single latent variable. We evaluate a critical assumption of this model: that FG is generalizable to any combination of plant species; i.e. that any combination of plant species will respond in the same direction to the soil 'fertility' gradient in terms of growth. METHODS: We grew nine widely different species singly in each of 25 soils from southern Quebec, Canada, whose FG value had been previously quantified. The original SEM was tested using every possible combination involving from four to nine species. KEY RESULTS: The assumption was rejected due to a subset of three species that responded to a second latent dimension. We then proposed an alternative model that includes FG plus a second latent variable that measures species' deviations from FG due to specific adaptations to soil pH. This alternative model was consistent with every combination of up to eight species. The predictions of FG when ignoring this second dimension and when using the new model were extremely correlated (r =0.98). CONCLUSIONS: The initial unidimensional model of Daou and Shipley was successful in non-acid soils but not in soils with extreme pH and when species specifically adapted to such extreme soils were included. The alternative two-dimensional model takes into account these exceptions and is consistent with the notion of shared physiological niche responses along a gradient of generalized soil fertility.


Asunto(s)
Plantas , Suelo , Quebec , Suelo/química , Microbiología del Suelo
13.
J Phycol ; 58(5): 703-718, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35830205

RESUMEN

The marine cyanobacterium Synechococcus elongatus was grown in a continuous culture system to study the interactive effects of temperature, irradiance, nutrient limitation, and the partial pressure of CO2 (pCO2) on its growth and physiological characteristics. Cells were grown on a 14:10 h light:dark cycle at all combinations of low and high irradiance (50 and 300 µmol photons ⋅ m-2 ⋅ s-1 , respectively), low and high pCO2 (400 and 1000 ppmv, respectively), nutrient limitation (nitrate-limited and nutrient-replete conditions), and temperatures of 20-45°C in 5°C increments. The maximum growth rate was ~4.5 · d-1 at 30-35°C. Under nutrient-replete conditions, growth rates at most temperatures and irradiances were about 8% slower at a pCO2 of 1000 ppmv versus 400 ppmv. The single exception was 45°C and high irradiance. Under those conditions, growth rates were ~45% higher at 1000 ppmv. Cellular carbon:nitrogen ratios were independent of temperature at a fixed relative growth rate but higher at high irradiance than at low irradiance. Initial slopes of photosynthesis-irradiance curves were higher at all temperatures under nutrient-replete versus nitrate-limited conditions; they were similar at all temperatures under high and low irradiance, except at 20°C, when they were suppressed at high irradiance. A model of phytoplankton growth in which cellular carbon was allocated to structure, storage, or the light or dark reactions of photosynthesis accounted for the general patterns of cell composition and growth rate. Allocation of carbon to the light reactions of photosynthesis was consistently higher at low versus high light and under nutrient-replete versus nitrate-limited conditions.


Asunto(s)
Synechococcus , Carbono , Dióxido de Carbono , Luz , Nitratos , Nitrógeno , Nutrientes , Fotosíntesis , Temperatura
14.
Int J Phytoremediation ; 24(1): 76-87, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34053380

RESUMEN

Eight free water surface constructed wetland microcosm (CWM) units are designed with single as well as mixed planting of Pistia stratiotes, Phragmites karka, and Typha latifolia with control to assess their competitive value (CV), relative growth rates (RGR), and pollutants removal efficiency. Further, the total dry biomass production and other growth parameters such as number of macrophytes, above-ground biomass, below-ground biomass, and root length were also measured to understand the dominant characteristics of the macrophytes. The CWM units with species mixture out-performed species monocultures. Removal of BOD, TP, SRP, NH4+-N, NO3--N, and NO2--N by mixed planting of P. stratiotes and P. karka was higher at most of the time. Typha latifolia was the superior competitor against both P. stratiotes and P. karka due to its aggressive characteristics that inhibits the growth of neighboring macrophytes. However, P. karka was the superior competitor against P. stratiotes. The RGR of T. latifolia in all experimental units was almost two times more than that of P. karka. Novelty Statement The CWM units with species mixture out-performed species monocultures. CWMs with more than one macrophytic species are less vulnerable to seasonal fluctuations and more effective in contaminants removal as compared to single macrophyte wetlands. Removal of BOD, TP, SRP, NH4+-N, NO3--N, and NO2--N by mixed planting of P. stratiotes and P. karka was higher at most of the time. The CWMs with P. stratiotes and P. karka are superior choice due to their higher wastewater nutrients removal capacity. The application of these three macrophytes in mixed cultures in free water surface constructed wetland is rare. The results are useful in designing large-scale multi-species wetlands which are less susceptible to seasonal variation and more effective in pollutants removal than single-species wetlands.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Biodegradación Ambiental , Ecología , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Humedales
15.
J Anim Breed Genet ; 139(5): 611-622, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35686668

RESUMEN

Data on Zandi sheep were analysed to quantify maternal and paternal imprinting, X chromosome and litter effects' contribution to phenotypic variation in birth weight (BW), weaning weight (WW), growth rate (GR), Kleiber ratio (KR), efficiency of growth (EF) and relative growth rate (RGR). To this end, a two-step approach was adopted. In the first step, each trait was analysed with a series of 16 animal models, which were identical for fixed and autosomal additive genetic effects but differed for combinations of maternal permanent environmental, maternal genetic, X chromosome and litter effects. For each trait, the best model was selected by the Akaike information criterion (AIC) and likelihood ratio tests (LRTs). In the second step, three additional models were fitted by adding maternal imprinting, paternal imprinting or both (models 17, 18 and 19) to the best model selected in the first step. Estimators of bias, dispersion and accuracy of breeding values estimated within 19 models with whole, and partial data were used to evaluate how well were the 19 models in estimating breeding values for the animals when their records were masked. For all traits studied, fitting the litter effect led to a better data fit. Also, it resulted in noticeable decreases in residual variance and other maternal variances. For growth traits, models containing the X-linked effects fitted the data substantially better than corresponding models without the X-linked effects. For BW, WW and GR, estimates of X-linked heritability ( h s 2 ) ranged between 0.09 (GR) and 0.14 (BW). Ignoring X-linked effects from the genetic evaluation model resulted in significant inflated autosomal additive genetic variance. For BW, WW, EF and RGR, models containing the imprinting effects provided a better fit of the data than otherwise identical models. Imprinting effects contributed significantly to the phenotypic variation of these traits in a range between 5% (RGR) and 8% (BW, WW). A sharp decline was observed in autosomal additive genetic variance following including imprinting effects in the model (27% to 40% depending on the trait). The least bias and dispersion, as well as greater accuracies for breeding values of focal animals, were for a model which included imprinting, X-linked and litter effects. It was concluded that imprinting, X-linked and litter effects need to be included in the genetic evaluation models for growth and efficiency-related traits of Zandi lambs.


Asunto(s)
Variación Biológica Poblacional , Cromosoma X , Animales , Peso al Nacer/genética , Peso Corporal , Fenotipo , Ovinos/genética , Destete
16.
J Biol Phys ; 48(3): 295-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779141

RESUMEN

Modeling and analysis of biological growth curves are an age-old study area in which much effort has been dedicated to developing new growth equations. Recent efforts focus on identifying the correct model from a large number of equations. The relative growth rate (RGR), developed by Fisher (1921), has largely been used in the statistical inference of biological growth curve models. It is convenient to express growth equations using RGR, where RGR can be expressed as functions of size or time. Even though RGR is model invariant, it has limitations when it comes to identifying actual growth patterns. By proposing interval-specific rate parameters (ISRPs), Pal et al. (2018) appeared to solve this problem. The ISRP is based on the mathematical structure of the growth equations. Therefore, it is not model invariant. The current effort is to develop a measure of growth that is model invariant like RGR and shares the advantages of ISRP. We propose a new measure of growth, which we call instantaneous maturity rate (IMR). IMR is model invariant, which allows it to distinguish growth patterns more clearly than RGR. IMR is also scale-invariant and can take several forms including increasing, decreasing, constant, sigmoidal, bell-shaped, and bathtub. A wide range of possible IMR shapes makes it possible to identify different growth curves. The estimation procedure of IMR under a stochastic setup has been developed. Statistical properties of empirical IMR estimators have also been investigated in detail. In addition to extensive simulation studies, real data sets have been analyzed to prove the utility of IMR.


Asunto(s)
Modelos Biológicos , Simulación por Computador
17.
Br Poult Sci ; 63(5): 701-719, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35634913

RESUMEN

1. It has been hypothesised that, for post-hatching domestic birds reared under good conditions, the relative growth rate R = (dW/dt)/W = dlnW/dt is a linear function of lnW; W is body weight. It followed that dW/dt = B.W. ln(A/W), where A is mature weight, and, by integration, that weight over time is described by a Gompertz function: Wt = A.exp.(-exp(-(G0 - B.t)), where Wt is weight at time t d, B is the rate parameter d-1, and G0 = -ln(-ln(W0/A)).2. Where growth data published in the literature did not show this relationship, it was likely to have been caused by sub-optimal conditions for maximum growth, such as inadequate nutrition or other factors.3. Published data, which have been diligently examined from both sexes and nine species, over 400-fold range of degree of maturity, collected over nearly a century of data from four continents, strongly corroborated the hypothesis.4. The data were not in agreement with another functions using three parameters and made functions with four or more parameters superfluous. The relationship between R and lnW should be carefully examined before subjecting any data set to further analysis.


Asunto(s)
Pollos , Masculino , Femenino , Animales
18.
J Exp Bot ; 72(20): 7180-7190, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34228101

RESUMEN

The ability of plants to acquire soil nitrogen (N) sources is plastic in response to abiotic and biotic factors. However, information about how plant preferences among N forms changes in response to internal plant N demand through growth phases, or to environmental stress such as ozone (O3), is scarce. Diploid and triploid Chinese white poplar were used to investigate N form preferences at two key developmental periods (spring, summer) and in response to summer O3 (ambient, 60 ppb above ambient). We used stable isotopes to quantify NH4+, NO3- and glycine N-uptake rates. Carbon acquisition was recorded simultaneously. Both ploidy levels differed in growth, N form preferences, and N and C use strategies. Diploid white poplars grew faster in spring but slower in summer compared with triploids. Diploid white poplars also showed plasticity among N form preferences through the season, with no preferences in spring, and NO3- preferred in summer, while triploids showed an overall preference for NO3-. Carbon acquisition and NO3- uptake were inhibited in both ploidy levels of poplar at elevated O3, which also reduced diploid total N uptake. However, triploid white poplars alleviated N uptake reduction, switching to similar preferences among N forms. We conclude that N form preferences by white poplar are driven by internal C and N use in response to nutrient demands, and external factors such as O3.


Asunto(s)
Ozono , Populus , Carbono , Diploidia , Nitrógeno , Hojas de la Planta , Populus/genética , Estaciones del Año , Triploidía
19.
Ann Bot ; 128(4): 419-430, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-33534909

RESUMEN

BACKGROUND AND AIMS: Phosphorus (P) and nitrogen (N) are essential nutrients that frequently limit primary productivity in terrestrial ecosystems. Efficient use of these nutrients is important for plants growing in nutrient-poor environments. Plants generally reduce foliar P concentration in response to low soil P availability. We aimed to assess ecophysiological mechanisms and adaptive strategies for efficient use of P in Banksia attenuata (Proteaceae), naturally occurring on deep sand, and B. sessilis, occurring on shallow sand over laterite or limestone, by comparing the allocation of P among foliar P fractions. METHODS: We carried out pot experiments with slow-growing B. attenuata, which resprouts after fire, and faster growing opportunistic B. sessilis, which is killed by fire, on substrates with different P availability using a randomized complete block design. We measured leaf P and N concentrations, photosynthesis, leaf mass per area, relative growth rate and P allocated to major biochemical fractions in B. attenuata and B. sessilis. KEY RESULTS: The two species had similarly low foliar total P concentrations, but distinct patterns of P allocation to P-containing fractions. The foliar total N concentration of B. sessilis was greater than that of B. attenuata on all substrates. The foliar total P and N concentrations in both species decreased with decreasing P availability. The relative growth rate of both species was positively correlated with concentrations of both foliar nucleic acid P and total N, but there was no correlation with other P fractions. Faster growing B. sessilis allocated more P to nucleic acids than B. attenuata did, but other fractions were similar. CONCLUSIONS: The nutrient allocation patterns in faster growing opportunistic B. sessilis and slower growing B. attenuata revealed different strategies in response to soil P availability which matched their contrasting growth strategy.


Asunto(s)
Ecosistema , Proteaceae , Nitrógeno , Nutrientes , Fósforo , Hojas de la Planta , Suelo
20.
Am J Bot ; 108(12): 2388-2404, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34634144

RESUMEN

PREMISE: Annual and perennial life history transitions are abundant among angiosperms, and understanding the phenotypic variation underlying life span shifts is a key endeavor of plant evolutionary biology. Comparative analyses of trait variation and correlation networks among annual and perennial plants is increasingly important as new herbaceous perennial crops are being developed for edible seed. However, it remains unclear how seed to vegetative growth trait relationships correlate with life span. METHODS: To assess the relative roles of genus and life span in predicting phenotypic variation and trait correlations, we measured seed size and shape, germination proportion, and early-life-stage plant height and leaf growth over 3 mo in 29 annual and perennial, herbaceous congeneric species from three legume genera (Lathyrus, Phaseolus, and Vicia). RESULTS: Genus was the strongest predictor of seed size and shape variation, and life span consistently predicted plant height and leaf number at single time points. Correlation networks revealed that annual species had significant associations between seed traits and vegetative traits, whereas perennials had no significant seed-vegetative associations. Each genus also differed in the extent of integration between seed and vegetative traits, as well as within-vegetative-trait correlation patterns. CONCLUSIONS: Genus and life span were important for predicting aspects of early-life-stage phenotypic variation and trait relationships. Differences in phenotypic correlation may indicate that selection on seed size traits will impact vegetative growth differently depending on life span, which has important implications for nascent perennial breeding programs.


Asunto(s)
Lathyrus , Phaseolus , Vicia , Productos Agrícolas , Longevidad , Fitomejoramiento , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA