Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(38): e2308338120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695919

RESUMEN

Allostery is a major driver of biological processes requiring coordination. Thus, it is one of the most fundamental and remarkable phenomena in nature, and there is motivation to understand and manipulate it to a multitude of ends. Today, it is often described in terms of two phenomenological models proposed more than a half-century ago involving only T(tense) or R(relaxed) conformations. Here, methyl-based NMR provides extensive detail on a dynamic T to R switch in the classical dimeric allosteric protein, yeast chorismate mutase (CM), that occurs in the absence of substrate, but only with the activator bound. Switching of individual subunits is uncoupled based on direct observation of mixed TR states in the dimer. This unique finding excludes both classic models and solves the paradox of a coexisting hyperbolic binding curve and highly skewed substrate-free T-R equilibrium. Surprisingly, structures of the activator-bound and effector-free forms of CM appear the same by NMR, providing another example of the need to account for dynamic ensembles. The apo enzyme, which has a sigmoidal activity profile, is shown to switch, not to R, but to a related high-energy state. Thus, the conformational repertoire of CM does not just change as a matter of degree depending on the allosteric input, be it effector and/or substrate. Rather, the allosteric model appears to completely change in different contexts, which is only consistent with modern ensemble-based frameworks.


Asunto(s)
Motivación , Polímeros , Saccharomyces cerevisiae
2.
Proc Natl Acad Sci U S A ; 120(41): e2310910120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782780

RESUMEN

Enzymes are known to sample various conformations, many of which are critical for their biological function. However, structural characterizations of enzymes predominantly focus on the most populated conformation. As a result, single-point mutations often produce structures that are similar or essentially identical to those of the wild-type enzyme despite large changes in enzymatic activity. Here, we show for mutants of a histone deacetylase enzyme (HDAC8) that reduced enzymatic activities, reduced inhibitor affinities, and reduced residence times are all captured by the rate constants between intrinsically sampled conformations that, in turn, can be obtained independently by solution NMR spectroscopy. Thus, for the HDAC8 enzyme, the dynamic sampling of conformations dictates both enzymatic activity and inhibitor potency. Our analysis also dissects the functional role of the conformations sampled, where specific conformations distinct from those in available structures are responsible for substrate and inhibitor binding, catalysis, and product dissociation. Precise structures alone often do not adequately explain the effect of missense mutations on enzymatic activity and drug potency. Our findings not only assign functional roles to several conformational states of HDAC8 but they also underscore the paramount role of dynamics, which will have general implications for characterizing missense mutations and designing inhibitors.


Asunto(s)
Mutación Missense , Conformación Proteica , Resonancia Magnética Nuclear Biomolecular/métodos , Catálisis
3.
Proc Natl Acad Sci U S A ; 119(24): e2112496119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35671421

RESUMEN

Thermodynamic preferences to form non-native conformations are crucial for understanding how nucleic acids fold and function. However, they are difficult to measure experimentally because this requires accurately determining the population of minor low-abundance (<10%) conformations in a sea of other conformations. Here, we show that melting experiments enable facile measurements of thermodynamic preferences to adopt nonnative conformations in DNA and RNA. The key to this "delta-melt" approach is to use chemical modifications to render specific minor non-native conformations the major state. The validity and robustness of delta-melt is established for four different non-native conformations under various physiological conditions and sequence contexts through independent measurements of thermodynamic preferences using NMR. Delta-melt is faster relative to NMR, simple, and cost-effective and enables thermodynamic preferences to be measured for exceptionally low-populated conformations. Using delta-melt, we obtained rare insights into conformational cooperativity, obtaining evidence for significant cooperativity (1.0 to 2.5 kcal/mol) when simultaneously forming two adjacent Hoogsteen base pairs. We also measured the thermodynamic preferences to form G-C+ and A-T Hoogsteen and A-T base open states for nearly all 16 trinucleotide sequence contexts and found distinct sequence-specific variations on the order of 2 to 3 kcal/mol. This rich landscape of sequence-specific non-native minor conformations in the DNA double helix may help shape the sequence specificity of DNA biochemistry. Thus, melting experiments can now be used to access thermodynamic information regarding regions of the free energy landscape of biomolecules beyond the native folded and unfolded conformations.


Asunto(s)
ADN , Conformación de Ácido Nucleico , ARN , Secuencia de Bases , ADN/química , Congelación , ARN/química , Termodinámica , Rayos Ultravioleta
4.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737836

RESUMEN

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Asunto(s)
Proteínas de Escherichia coli , Fosfoproteínas Fosfatasas , Proteínas Tirosina Quinasas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo
5.
J Biol Chem ; 299(4): 103037, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806683

RESUMEN

The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded ß-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas de Ciclo Celular , Lípidos , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espectroscopía de Resonancia Magnética , Bacterias/citología , División Celular
6.
J Biol Chem ; 299(9): 105159, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579948

RESUMEN

Members of the FK506-binding protein (FKBP) family regulate a range of important physiological processes. Unfortunately, current therapeutics such as FK506 and rapamycin exhibit only modest selectivity among these functionally distinct proteins. Recent progress in developing selective inhibitors has been reported for FKBP51 and FKBP52, which act as mutual antagonists in the regulation of steroid hormone signaling. Two structurally similar inhibitors yield distinct protein conformations at the binding site. Localized conformational transition in the binding site of the unliganded FK1 domain of FKBP51 is suppressed by a K58T mutation that also suppresses the binding of these inhibitors. Here, it is shown that the changes in amide hydrogen exchange kinetics arising from this K58T substitution are largely localized to this structural region. Accurate determination of the hydroxide-catalyzed exchange rate constants in both the wildtype and K58T variant proteins impose strong constraints upon the pattern of amide exchange reactivities within either a single or a pair of transient conformations that could give rise to the differences between these two sets of measured rate constants. Poisson-Boltzmann continuum dielectric calculations provide moderately accurate predictions of the structure-dependent hydrogen exchange reactivity for solvent-exposed protein backbone amides. Applying such calculations to the local protein conformations observed in the two inhibitor-bound FKBP51 domains demonstrated that the experimentally determined exchange rate constants for the wildtype domain are robustly predicted by a population-weighted sum of the experimental hydrogen exchange reactivity of the K58T variant and the predicted exchange reactivities in model conformations derived from the two inhibitor-bound protein structures.


Asunto(s)
Proteínas de Unión a Tacrolimus , Tacrolimus , Conformación Proteica , Proteínas de Unión a Tacrolimus/metabolismo , Sitios de Unión , Amidas
7.
Proteins ; 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221646

RESUMEN

The spindle checkpoint complex is a key surveillance mechanism in cell division that prevents premature separation of sister chromatids. Mad2 is an integral component of this spindle checkpoint complex that recognizes cognate substrates such as Mad1 and Cdc20 in its closed (C-Mad2) conformation by fastening a "seatbelt" around short peptide regions that bind to the substrate recognition site. Mad2 is also a metamorphic protein that adopts not only the fold found in C-Mad2, but also a structurally distinct open conformation (O-Mad2) which is incapable of binding substrates. Here, we show using chemical exchange saturation transfer (CEST) and relaxation dispersion (CPMG) NMR experiments that Mad2 transiently populates three other higher free energy states with millisecond lifetimes, two in equilibrium with C-Mad2 (E1 and E2) and one with O-Mad2 (E3). E1 is a mimic of substrate-bound C-Mad2 in which the N-terminus of one C-Mad2 molecule inserts into the seatbelt region of a second molecule of C-Mad2, providing a potential pathway for autoinhibition of C-Mad2. E2 is the "unbuckled" conformation of C-Mad2 that facilitates the triage of molecules along competing fold-switching and substrate binding pathways. The E3 conformation that coexists with O-Mad2 shows fluctuations at a hydrophobic lock that is required for stabilizing the O-Mad2 fold and we hypothesize that E3 represents an early intermediate on-pathway towards conversion to C-Mad2. Collectively, the NMR data highlight the rugged free energy landscape of Mad2 with multiple low-lying intermediates that interlink substrate-binding and fold-switching, and also emphasize the role of molecular dynamics in its function.

8.
J Biomol NMR ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918317

RESUMEN

Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2'-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.

9.
J Biomol NMR ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083133

RESUMEN

A transverse relaxation optimized spectroscopy (TROSY) approach is described for the optimal detection of NH2 groups in asparagine and glutamine side chains of proteins. Specifically, we have developed NMR experiments for isolating the slow-relaxing 15N and 1H components of NH2 multiplets. Although even modest sensitivity gains in 2D NH2-TROSY correlation maps compared to their decoupled NH2-HSQC counterparts can be achieved only occasionally, substantial improvements in resolution of the NMR spectra are demonstrated for asparagine and glutamine NH2 sites of a buried cavity mutant, L99A, of T4 lysozyme at 5 ºC. The NH2-TROSY approach is applied to CPMG relaxation dispersion measurements at the side chain NH2 positions of the L99A T4 lysozyme mutant - a model system for studies of the role of protein dynamics in ligand binding.

10.
J Biomol NMR ; 77(3): 83-91, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095392

RESUMEN

A methyl Transverse Relaxation Optimized Spectroscopy (methyl-TROSY) based, multiple quantum (MQ) 13C Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiment is described. The experiment is derived from the previously developed MQ 13C-1H CPMG scheme (Korzhnev in J Am Chem Soc 126: 3964-73, 2004) supplemented with a CPMG train of refocusing 1H pulses applied with constant frequency and synchronized with the 13C CPMG pulse train. The optimal 1H 'decoupling' scheme that minimizes the amount of fast-relaxing methyl MQ magnetization present during CPMG intervals, makes use of an XY-4 phase cycling of the refocusing composite 1H pulses. For small-to-medium sized proteins, the MQ 13C CPMG experiment has the advantage over its single quantum (SQ) 13C counterpart of significantly reducing intrinsic, exchange-free relaxation rates of methyl coherences. For high molecular weight proteins, the MQ 13C CPMG experiment eliminates complications in the interpretation of MQ 13C-1H CPMG relaxation dispersion profiles arising from contributions to exchange from differences in methyl 1H chemical shifts between ground and excited states. The MQ 13C CPMG experiment is tested on two protein systems: (1) a triple mutant of the Fyn SH3 domain that interconverts slowly on the chemical shift time scale between the major folded state and an excited state folding intermediate; and (2) the 82-kDa enzyme Malate Synthase G (MSG), where chemical exchange at individual Ile δ1 methyl positions occurs on a much faster time-scale.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopía de Resonancia Magnética
11.
J Biomol NMR ; 77(1-2): 55-67, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36639431

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.


Asunto(s)
Protones , Triptófano , Flúor , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Triptófano/química , Radioisótopos de Flúor/química
12.
NMR Biomed ; 35(2): e4623, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34595785

RESUMEN

Several fruit juices are used as oral contrast agents to improve the quality of images in magnetic resonance cholangiopancreatography. They are often preferred to conventional synthetic contrast agents because of their very low cost, natural origin, intrinsic safety, and comparable image qualities. Pineapple and blueberry juices are the most employed in clinical practice due to their higher content of manganese(II) ions. The interest of pharmaceutical companies in these products is testified by the appearance in the market of fruit juice derivatives with improved contrast efficacy. Here, we investigate the origin of the contrast of blueberry juice, analyze the parameters that can effect it, and elucidate the differences with pineapple juice and manganese(II) solutions. It appears that, although manganese(II) is the paramagnetic ion responsible for the contrast, it is the interaction of manganese(II) with other juice components that modulates the efficiency of the juice as a magnetic resonance contrast agent. On these grounds, we conclude that blueberry juice concentrated to the same manganese concentration of pineapple juice would prove a more efficient contrast agent than pineapple juice.


Asunto(s)
Pancreatocolangiografía por Resonancia Magnética/métodos , Medios de Contraste/farmacología , Jugos de Frutas y Vegetales , Frutas , Manganeso/farmacología , Administración Oral
13.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897827

RESUMEN

PR-10 proteins constitute a major cause of food allergic reactions. Birch-pollen-related food allergies are triggered by the immunologic cross-reactivity of IgE antibodies with structurally homologous PR-10 proteins that are present in birch pollen and various food sources. While the three-dimensional structures of PR-10 food allergens have been characterized in detail, only a few experimental studies have addressed the structural flexibility of these proteins. In this study, we analyze the millisecond-timescale structural flexibility of thirteen PR-10 proteins from prevalent plant food sources by NMR relaxation-dispersion spectroscopy, in a comparative manner. We show that all the allergens in this study have inherently flexible protein backbones in solution, yet the extent of the structural flexibility appears to be strikingly protein-specific (but not food-source-specific). Above-average flexibility is present in the two short helices, α1 and α2, which form a V-shaped support for the long C-terminal helix α3, and shape the internal ligand-binding cavity, which is characteristic for PR-10 proteins. An in-depth analysis of the NMR relaxation-dispersion data for the PR-10 allergen from peanut reveals the presence of at least two subglobal conformational transitions on the millisecond timescale, which may be related to the release of bound low-molecular-weight ligands from the internal cavity.


Asunto(s)
Hipersensibilidad a los Alimentos , Polen , Alérgenos , Secuencia de Aminoácidos , Antígenos de Plantas , Betula/metabolismo , Reacciones Cruzadas , Proteínas de Plantas/metabolismo , Polen/metabolismo
14.
J Biol Chem ; 295(29): 9868-9878, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32434931

RESUMEN

Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-ß-strand and ß-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.


Asunto(s)
Proteínas Bacterianas/química , Manosiltransferasas/química , Simulación de Dinámica Molecular , Mycobacterium smegmatis/enzimología , Pliegue de Proteína , Resonancia Magnética Nuclear Biomolecular
15.
Biochem Biophys Res Commun ; 580: 63-66, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34624571

RESUMEN

Z-DNA binding proteins (ZBPs) play important roles in RNA editing, innate immune responses, and viral infections. Numerous studies have implicated a role for conformational motions during ZBPs binding upon DNA, but the quantitative intrinsic conformational exchanges of ZBP have not been elucidated. To understand the correlation between the biological function and dynamic feature of the Zα domains of human ADAR1 (hZαADAR1), we have performed the 15N backbone amide Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments on the free hZαADAR1 at two different magnetic fields at 35 °C. The robust inter-dependence of parameters in the global fitting process using multi-magnetic field CPMG profiles allows us characterizing the dynamic properties of conformational changes in hZαADAR1. This study found that free hZαADAR1 exhibited the conformational exchange with a kex of 5784 s-1 between the states "A" (89% population) and "B" (11% population). The different hydrophobic interactions among helices α1, α2, and α3 between these two states might correlate with efficient Z-DNA binding achieved by the hydrogen bonding interactions between its side-chains and the phosphate backbone of Z-DNA.


Asunto(s)
Adenosina Desaminasa/química , Proteínas de Unión al ARN/química , Adenosina Desaminasa/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Edición de ARN , Proteínas de Unión al ARN/metabolismo
16.
Chembiochem ; 22(6): 1079-1083, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33140496

RESUMEN

The millisecond timescale dynamics of activated Ras transiently sample a low-populated conformational state that has distinct surface property from the major state and represents a promising target for binding of small-molecule compounds. To avoid the complications of hydrolysis, dynamics and other properties of active Ras have so far been routinely investigated by using non-hydrolyzable GTP analogues, which, however, were previously reported to alter both the kinetics and distribution of the conformational exchange. In this study, we quantitatively measured and validated the internal dynamics of Ras complexed with a slowly hydrolyzable GTP analogue, GTPγS, which increases the lifetime of active Ras by 23 times relative to that of native GTP. It was found that GTPγS, in addition to its better mimicking of the exchange kinetics than the commonly used non-hydrolyzable analogues GppNHp and GppCH2 p, can rigorously reproduce the natural dynamics network in active Ras, thus indicating its fitness for use in the development of allosteric inhibitors.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/análogos & derivados , Humanos , Hidrólisis , Cinética , Espectroscopía de Resonancia Magnética , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas p21(ras)/genética
17.
Solid State Nucl Magn Reson ; 111: 101710, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33450712

RESUMEN

Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, protein folding and misfolding regulations, as well as protein-protein and protein-nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of 2H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (R1ρ), quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST). With applications chosen from amyloid-ß fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for 15N/13C/1H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.


Asunto(s)
Péptidos beta-Amiloides , Pliegue de Proteína , Amiloide/química , Péptidos beta-Amiloides/química , Deuterio , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica
18.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805331

RESUMEN

Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in µs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.


Asunto(s)
Adenosina Desaminasa/química , ADN Forma B/química , ADN de Forma Z/química , Modelos Moleculares , Proteínas de Unión al ARN/química , Adenosina Desaminasa/metabolismo , Algoritmos , ADN Forma B/metabolismo , ADN de Forma Z/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Termodinámica
19.
Proteins ; 88(1): 69-81, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31293000

RESUMEN

In class II transcription activation, the transcription factor normally binds to the promoter near the -35 position and contacts the domain 4 of σ factors (σ4 ) to activate transcription. However, σ4 of σ70 appears to be poorly folded on its own. Here, by fusing σ4 with the RNA polymerase ß-flap-tip-helix, we constructed two σ4 chimera proteins, one from σ70σ470c and another from σSσ4Sc of Klebsiella pneumoniae. The two chimera proteins well folded into a monomeric form with strong binding affinities for -35 element DNA. Determining the crystal structure of σ4Sc in complex with -35 element DNA revealed that σ4Sc adopts a similar structure as σ4 in the Escherichia coli RNA polymerase σS holoenzyme and recognizes -35 element DNA specifically by several conserved residues from the helix-turn-helix motif. By using nuclear magnetic resonance (NMR), σ470c was demonstrated to recognize -35 element DNA similar to σ4Sc . Carr-Purcell-Meiboom-Gill relaxation dispersion analyses showed that the N-terminal helix and the ß-flap-tip-helix of σ470c have a concurrent transient α-helical structure and DNA binding reduced the slow dynamics on σ470c . Finally, only σ470c was shown to interact with the response regulator PmrA and its promoter DNA. The chimera proteins are capable of -35 element DNA recognition and can be used for study with transcription factors or other factors that interact with domain 4 of σ factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/metabolismo , Factor sigma/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Mapas de Interacción de Proteínas , Factor sigma/química , Factor sigma/genética , Activación Transcripcional
20.
J Biomol NMR ; 74(12): 753-766, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32997265

RESUMEN

Proteins and nucleic acids are highly dynamic bio-molecules that can populate a variety of conformational states. NMR relaxation dispersion (RD) methods are uniquely suited to quantify the associated kinetic and thermodynamic parameters. Here, we present a consistent suite of 19F-based CPMG, on-resonance R1ρ and off-resonance R1ρ RD experiments. We validate these experiments by studying the unfolding transition of a 7.5 kDa cold shock protein. Furthermore we show that the 19F RD experiments are applicable to very large molecular machines by quantifying dynamics in the 360 kDa half-proteasome. Our approach significantly extends the timescale of chemical exchange that can be studied with 19F RD, adds robustness to the extraction of exchange parameters and can determine the absolute chemical shifts of excited states. Importantly, due to the simplicity of 19F NMR spectra, it is possible to record complete datasets within hours on samples that are of very low costs. This makes the presented experiments ideally suited to complement static structural information from cryo-EM and X-ray crystallography with insights into functionally relevant motions.


Asunto(s)
Flúor/química , Movimiento (Física) , Resonancia Magnética Nuclear Biomolecular , Proteínas Bacterianas/química , Cinética , Complejo de la Endopetidasa Proteasomal/química , Pliegue de Proteína , Termodinámica , Thermotoga maritima/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA