Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(5): 1109-1124.e25, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32841601

RESUMEN

Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.


Asunto(s)
Membrana Celular/inmunología , Cloroplastos/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Transducción de Señal/inmunología , Proteínas de Arabidopsis/inmunología , Interacciones Huésped-Patógeno/inmunología , Ácido Salicílico/inmunología , Virulencia/inmunología
2.
Mol Cell ; 81(18): 3866-3876.e2, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34352204

RESUMEN

The emerging role of mitochondria as signaling organelles raises the question of whether individual mitochondria can initiate heterotypic communication with neighboring organelles. Using fluorescent probes targeted to the endoplasmic-reticulum-mitochondrial interface, we demonstrate that single mitochondria generate oxidative bursts, rapid redox oscillations, confined to the nanoscale environment of the interorganellar contact sites. Using probes fused to inositol 1,4,5-trisphosphate receptors (IP3Rs), we show that Ca2+ channels directly sense oxidative bursts and respond with Ca2+ transients adjacent to active mitochondria. Application of specific mitochondrial stressors or apoptotic stimuli dramatically increases the frequency and amplitude of the oxidative bursts by enhancing transient permeability transition pore openings. Conversely, blocking interface Ca2+ transport via elimination of IP3Rs or mitochondrial calcium uniporter channels suppresses ER-mitochondrial Ca2+ feedback and cell death. Thus, single mitochondria initiate local retrograde signaling by miniature oxidative bursts and, upon metabolic or apoptotic stress, may also amplify signals to the rest of the cell.


Asunto(s)
Mitocondrias/metabolismo , Transporte de Proteínas/fisiología , Estallido Respiratorio/fisiología , Calcio/metabolismo , Canales de Calcio , Señalización del Calcio/fisiología , Permeabilidad de la Membrana Celular/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Células HEK293 , Células Hep G2 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Mitocondriales/metabolismo , Oxidación-Reducción , Estallido Respiratorio/genética , Análisis de la Célula Individual/métodos
3.
Mol Cell ; 69(5): 757-772.e7, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499132

RESUMEN

As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways in mammals are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a transcriptional activator of nuclear-encoded mitochondrial genes. GPS2-regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of a nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and brown adipose tissue (BAT) from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA POL2 activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an additional layer of regulation of mitochondrial gene transcription, uncover a direct mitochondria-nuclear communication pathway, and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.


Asunto(s)
Núcleo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Transducción de Señal/fisiología , Células 3T3-L1 , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Metilación , Ratones , Mitocondrias/genética , Regiones Promotoras Genéticas/fisiología , Activación Transcripcional/fisiología
4.
Trends Biochem Sci ; 46(10): 812-821, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34088564

RESUMEN

High copy number, damage prone, and lean on repair mechanisms are unique features of mitochondrial DNA (mtDNA) that are hard to reconcile with its essentiality for oxidative phosphorylation, the primary function ascribed to this maternally inherited component of our genome. We propose that mtDNA is also a genotoxic stress sentinel, as well as a direct second messenger of this type of cellular stress. Here, we discuss existing evidence for this sentinel/effector role through the ability of mtDNA to escape the confines of the mitochondrial matrix and activate nuclear DNA damage/repair responses via interferon-stimulated gene products and other downstream effectors. However, this arrangement may come at a cost, leading to cancer chemoresistance and contributing to inflammation, disease pathology, and aging.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Núcleo Celular/metabolismo , Daño del ADN , Reparación del ADN , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Estrés Oxidativo
5.
J Biol Chem ; 300(9): 107696, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39168183

RESUMEN

An ever-growing number of studies highlight the importance of S-acylation, a reversible protein-lipid modification, for diverse aspects of intracellular signaling. In this review, we summarize the current understanding of how S-acylation regulates perhaps the best-known class of signaling enzymes, protein kinases. We describe how S-acylation acts as a membrane targeting signal that localizes certain kinases to specific membranes, and how such membrane localization in turn facilitates the assembly of signaling hubs consisting of an S-acylated kinase's upstream activators and/or downstream targets. We further discuss recent findings that S-acylation can control additional aspects of the function of certain kinases, including their interactions and, surprisingly, their activity, and how such regulation might be exploited for potential therapeutic gain. We go on to describe the roles and regulation of de-S-acylases and how extracellular signals drive dynamic (de)S-acylation of certain kinases. We discuss how S-acylation has the potential to lead to "emergent properties" that alter the temporal profile and/or salience of intracellular signaling events. We close by giving examples of other S-acylation-dependent classes of signaling enzymes and by discussing how recent biological and technological advances should facilitate future studies into the functional roles of S-acylation-dependent signaling.


Asunto(s)
Transducción de Señal , Acilación , Humanos , Animales , Proteínas Quinasas/metabolismo , Membrana Celular/metabolismo
6.
Plant J ; 120(1): 91-108, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39145415

RESUMEN

Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lincomicina , Fenotipo , Factores de Transcripción , Lincomicina/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Genoma de Planta/genética , Proteínas de Unión al ADN
7.
Plant J ; 118(1): 141-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128030

RESUMEN

The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
EMBO J ; 40(17): e107586, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34190355

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal non-cell-autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A -ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72-mutant patients, and the SOD1G93A -ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS-affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4-dynein interaction reduces MN loss in human-derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4-dependent retrograde death signal that underlies MN loss in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal , Proteínas del Tejido Nervioso/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Axones/metabolismo , Muerte Celular , Línea Celular , Células Cultivadas , Dineínas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas del Tejido Nervioso/genética , Transducción de Señal , Superóxido Dismutasa-1/genética
9.
Am J Physiol Cell Physiol ; 326(2): C442-C448, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009196

RESUMEN

Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.


Asunto(s)
Calcio , MicroARNs , Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Mitocondrias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fenotipo , Lactatos/metabolismo
10.
Plant J ; 114(4): 783-804, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861314

RESUMEN

A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Solanum lycopersicum/genética , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Flores
11.
Plant Cell Physiol ; 65(6): 1014-1028, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38668647

RESUMEN

The chloroplast thylakoid membrane is composed of membrane lipids and photosynthetic protein complexes, and the orchestration of thylakoid lipid biosynthesis and photosynthesis-associated protein accumulation is considered important for thylakoid development. Galactolipids consist of ∼80% of the thylakoid lipids, and their biosynthesis is fundamental for chloroplast development. We previously reported that the suppression of galactolipid biosynthesis decreased the expression of photosynthesis-associated nuclear-encoded genes (PhAPGs) and photosynthesis-associated plastid-encoded genes (PhAPGs). However, the mechanism for coordinative regulation between galactolipid biosynthesis in plastids and the expression of PhANGs and PhAPGs remains largely unknown. To elucidate this mechanism, we investigated the gene expression patterns in galactolipid-deficient Arabidopsis seedlings during the de-etiolation process. We found that galactolipids are crucial for inducing both the transcript accumulation of PhANGs and PhAPGs and the accumulation of plastid-encoded photosynthesis-associated proteins in developing chloroplasts. Genetic analysis indicates the contribution of the GENOMES UNCOUPLED1 (GUN1)-mediated plastid-to-nucleus signaling pathway to PhANG regulation in response to galactolipid levels. Previous studies suggested that the accumulation of GUN1 reflects the state of protein homeostasis in plastids and alters the PhANG expression level. Thus, we propose a model that galactolipid biosynthesis determines the protein homeostasis in plastids in the initial phase of de-etiolation and optimizes GUN1-dependent signaling to regulate the PhANG expression. This mechanism might contribute to orchestrating the biosynthesis of lipids and proteins for the biogenesis of functional chloroplasts in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Galactolípidos , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Galactolípidos/metabolismo , Galactolípidos/biosíntesis , Fotosíntesis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tilacoides/metabolismo , Plantones/genética , Plantones/metabolismo , Proteínas de Unión al ADN
12.
Funct Integr Genomics ; 24(4): 116, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910225

RESUMEN

Chloroplasts are not only critical photosynthesis sites in plants, but they also participate in plastidial retrograde signaling in response to developmental and environmental signals. MEcPP (2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate) is an intermediary in the methylerythritol phosphate (MEP) pathway in chloroplasts. It is a critical precursor for the synthesis of isoprenoids and terpenoid derivatives, which play crucial roles in plant growth and development, photosynthesis, reproduction, and defense against environmental constraints. Accumulation of MEcPP under stressful conditions triggers the expression of IMPα-9 and TPR2, contributing to the activation of abiotic stress-responsive genes. In this correspondence, we discuss plastidial retrograde signaling in support of a recently published paper in Molecular Plant (Zeng et al. 2024). We hope that it can shed more insight on the retrograde signaling cascade.


Asunto(s)
Cloroplastos , Estrés Fisiológico , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Eritritol/metabolismo , Eritritol/análogos & derivados , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos de Azúcar/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética
13.
Biochem Biophys Res Commun ; 710: 149886, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581953

RESUMEN

Mdivi-1, Mitochondrial DIVIsion inhibitor 1, has been widely employed in research under the assumption that it exclusively influences mitochondrial fusion, but effects other than mitochondrial dynamics have been underinvestigated. This paper provides transcriptome and DNA methylome-wide analysis for Mdivi-1 treated SH-SY5Y human neuroblastoma cells using RNA sequencing (RNA-seq) and methyl capture sequencing (MC-seq) methods. Gene ontology analysis of RNA sequences revealed that p53 transcriptional gene network and DNA replication initiation-related genes were significantly up and down-regulated, respectively, showing the correlation with the arrest cell cycle in the G1 phase. MC-seq, a powerful sequencing method for capturing DNA methylation status in CpG sites, revealed that although Mdivi-1 does not induce dramatic DNA methylation change, the subtle alterations were concentrated within the CpG island. Integrative analysis of both sequencing data disclosed that the p53 transcriptional network was activated while the Parkinson's disease pathway was halted. Next, we investigated several changes in mitochondria in response to Mdivi-1. Copy number and transcription of mitochondrial DNA were suppressed. ROS levels increased, and elevated ROS triggered mitochondrial retrograde signaling rather than inducing direct DNA damage. In this study, we could better understand the molecular network of Mdivi-1 by analyzing DNA methylation and mRNA transcription in the nucleus and further investigating various changes in mitochondria, providing inspiration for studying nuclear-mitochondrial communications.


Asunto(s)
Dinaminas , Neuroblastoma , Humanos , Dinaminas/metabolismo , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Quinazolinonas/farmacología
14.
BMC Plant Biol ; 24(1): 180, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459432

RESUMEN

BACKGROUND: Primary response genes play a pivotal role in translating short-lived stress signals into sustained adaptive responses. In this study, we investigated the involvement of ATL80, an E3 ubiquitin ligase, in the dynamics of gene expression following water deprivation stress. We observed that ATL80 is rapidly activated within minutes of water deprivation stress perception, reaching peak expression around 60 min before gradually declining. ATL80, despite its post-translational regulation role, emerged as a key player in modulating early gene expression responses to water deprivation stress. RESULTS: The impact of ATL80 on gene expression was assessed using a time-course microarray analysis (0, 15, 30, 60, and 120 min), revealing a burst of differentially expressed genes, many of which were associated with various stress responses. In addition, the diversity of early modulation of gene expression in response to water deprivation stress was significantly abolished in the atl80 mutant compared to wild-type plants. A subset of 73 genes that exhibited a similar expression pattern to ATL80 was identified. Among them, several are linked to stress responses, including ERF/AP2 and WRKY transcription factors, calcium signaling genes, MAP kinases, and signaling peptides. Promoter analysis predicts enrichment of binding sites for CAMTA1 and CAMTA5, which are known regulators of rapid stress responses. Furthermore, we have identified a group of differentially expressed ERF/AP2 transcription factors, proteins associated with folding and refolding, as well as pinpointed core module genes which are known to play roles in retrograde signaling pathways that cross-referenced with the early ATL80 transcriptome. CONCLUSIONS: Based on these findings, we propose that ATL80 may target one or more components within the retrograde signaling pathways for degradation. In essence, ATL80 serves as a bridge connecting these signaling pathways and effectively functions as an alarm signal.


Asunto(s)
Ubiquitina-Proteína Ligasas , Privación de Agua , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/genética , Deshidratación , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
15.
New Phytol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286853

RESUMEN

Sessile plants harness mitochondria and chloroplasts to sense and adapt to diverse environmental stimuli. These complex processes involve the generation of pivotal signaling molecules, including reactive oxygen species (ROS), phytohormones, volatiles, and diverse metabolites. Furthermore, the specific modulation of chloroplast proteins, through activation or deactivation, significantly enhances the plant's capacity to engage with its dynamic surroundings. While existing reviews have extensively covered the role of plastidial retrograde modules in developmental and light signaling, our focus lies in investigating how chloroplasts leverage photosynthetic ROS to navigate environmental fluctuations and counteract oxidative stress, thereby sustaining primary metabolism. Unraveling the nuanced interplay between photosynthetic ROS and plant stress responses holds promise for uncovering new insights that could reinforce stress resistance and optimize net photosynthesis rates. This exploration aspires to pave the way for innovative strategies to enhance plant resilience and agricultural productivity amidst changing environmental conditions.

16.
J Exp Bot ; 75(15): 4655-4670, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38812358

RESUMEN

Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as second messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and a target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of ß-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located-in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled a dual role of ANAC102 in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estrés Oxidativo , Paraquat , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Paraquat/farmacología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regulación de la Expresión Génica de las Plantas , Cloroplastos/metabolismo
17.
Plant Cell Rep ; 43(6): 141, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743349

RESUMEN

KEY MESSAGE: A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.


Asunto(s)
Catharanthus , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas , Alcaloides de Triptamina Secologanina , Factores de Transcripción , Catharanthus/genética , Catharanthus/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Cloroplastos/metabolismo
18.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063070

RESUMEN

Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase beta-subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in Arabidopsis thaliana. Transcriptome analysis revealed that the expression levels of PhANGs were significantly higher in the mutants affected in the AT5G08670 gene encoding the mitochondrial ATP synthase beta-subunit, compared to wild-type (WT) seedlings when treated with lincomycin (LIN) or norflurazon (NF). Further studies indicated that the expression of nuclear genes involved in chloroplast and mitochondrial retrograde signaling was affected in the AT5G08670 mutant seedlings treated with LIN. These changes might be linked to the modulation of some transcription factors (TFs), such as LHY (Late Elongated Hypocotyl), PIF (Phytochrome-Interacting Factors), MYB, WRKY, and AP2/ERF (Ethylene Responsive Factors). These findings suggest that the activity of mitochondrial ATP synthase significantly influences plastid retrograde signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , ATPasas de Translocación de Protón Mitocondriales , Plastidios , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Plastidios/metabolismo , Plastidios/genética , Mitocondrias/metabolismo , Plantones/genética , Plantones/metabolismo , Mutación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lincomicina/farmacología , Perfilación de la Expresión Génica
19.
Physiol Mol Biol Plants ; 30(2): 167-183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38623168

RESUMEN

Chloroplasts are one of the defining features in most plants, primarily known for their unique property to carry out photosynthesis. Besides this, chloroplasts are also associated with hormone and metabolite productions. For this, biogenesis and development of chloroplast are required to be synchronized with the seedling growth to corroborate the maximum rate of photosynthesis following the emergence of seedlings. Chloroplast biogenesis and development are dependent on the signaling to and from the chloroplast, which are in turn regulated by several endogenous and exogenous cues. Light and hormones play a crucial role in chloroplast maturation and development. Chloroplast signaling involves a coordinated two-way connection between the chloroplast and nucleus, termed retrograde and anterograde signaling, respectively. Anterograde and retrograde signaling are involved in regulation at the transcriptional level and downstream modifications and are modulated by several metabolic and external cues. The communication between chloroplast and nucleus is essential for plants to develop strategies to cope with various stresses including high light or high heat. In this review, we have summarized several aspects of chloroplast development and its regulation through the interplay of various external and internal factors. We have also discussed the involvement of chloroplasts as sensors of various external environment stress factors including high light and temperature, and communicate via a series of retrograde signals to the nucleus, thus playing an essential role in plants' abiotic stress response.

20.
Curr Issues Mol Biol ; 45(3): 1794-1809, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975485

RESUMEN

Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA