Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(4): 925-944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214704

RESUMEN

Lipids are a diverse class of molecules involved in many biological functions including cell signaling or cell membrane assembly. Owing to this relevance, LC-MS/MS-based lipidomics emerged as a major field in modern analytical chemistry. Here, we thoroughly characterized the influence of MS and LC settings - of a Q Exactive HF operated in Full MS/data-dependent MS2 TOP N acquisition mode - in order to optimize the semi-quantification of polar lipids. Optimization of MS-source settings improved the signal intensity by factor 3 compared to default settings. Polar lipids were separated on an ACQUITY Premier CSH C18 reversed-phase column (100 × 2.1 mm, 1.7 µm, 130 Å) during an elution window of 28 min, leading to a sufficient number of both data points across the chromatographic peaks, as well as MS2 spectra. Analysis was carried out in positive and negative ionization mode enabling the detection of a broader spectrum of lipids and to support the structural characterization of lipids. Optimal sample preparation of biological samples was achieved by liquid-liquid extraction using MeOH/MTBE resulting in an excellent extraction recovery > 85% with an intra-day and inter-day variability < 15%. The optimized method was applied on the investigation of changes in the phospholipid pattern in plasma from human subjects supplemented with n3-PUFA (20:5 and 22:6). The strongest increase was observed for lipids bearing 20:5, while 22:4 bearing lipids were lowered. Specifically, LPC 20:5_0:0 and PC 16:0_20:5 were found to be strongest elevated, while PE 18:0_22:4 and PC 18:2_18:2 were decreased by n3-PUFA supplementation. These results were confirmed by targeted LC-MS/MS using commercially available phospholipids as standards.


Asunto(s)
Lipidómica , Fosfolípidos , Humanos , Fosfolípidos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Líquida de Alta Presión
2.
Anal Bioanal Chem ; 415(18): 4411-4422, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36853412

RESUMEN

The growing interest in ingredients from natural sources has expanded the need for quality assessments of plant extracts. Analytical quality-by-design (AQbD) has been increasingly applied in regulated environments such as pharmaceutical industries and, more recently, for the bioactive compounds found in botanical materials. This work aimed to obtain qualitative (overall resolution and maximum peak capacity) and quantitative performances for target analytes using AQbD principles. The analytical target profile was elaborated; critical method parameters (independent variables) that affect the critical method attributes (dependent variables) were selected from a risk assessment for a reversed-phase liquid chromatography with diode array detection (RPLC-DAD) method. YMC-Triart C18 (3.0 × 100 mm, 1.9 µm) and a gradient elution using 0.2% acetic acid and methanol:acetonitrile 1:3 (v/v) were chosen as the stationary and mobile phases, respectively. The optimal and robust conditions (temperature at 33.3 °C, flow rate of 0.68 mL.min-1, and a gradient slope of 4.18%.min-1) were established by the method operable design region (MODR). The validation was performed by accuracy profiles using 90% expectation tolerance intervals for the selected compounds found in Citrus spp. using C. japonica as blank matrix. The lower limits of quantification for hesperidin, bergapten, herniarin, and citropten were 5.32, 0.40, 0.49, and 0.52 mg.L-1, respectively (acceptance limit was set at ± 20%). Nobiletin did not show an adequate quantitative performance.


Asunto(s)
Citrus , Hesperidina , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa
3.
Chirality ; 35(1): 58-66, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345792

RESUMEN

Carboxymethyl-ß-cyclodextrins (CM-ß-CDs) with five kinds of degrees of substitution were synthesized and characterized. Analytical enantioseparation of six basic drugs containing N-alkyl groups, including pheniramine, chlorpheniramine, labetalol, propranolol, venlafaxine, and trans-paroxol, was achieved by reversed-phase high-performance liquid chromatography (RP-HPLC) using the synthesized CM-ß-CD as chiral mobile phase additives. Key influence factors were optimized, including organic modifier, pH value, CM-ß-CD with different degrees of substitution, and concentration of CM-ß-CD. The mobile phase was composed of methanol and 10 mmol L-1 of phosphate buffer pH 4.0 containing 10 mmol L-1 of CM-ß-CD. Peak resolution for six racemic drugs was gradually increased with an increasing degree of substitution of the synthesized CM-ß-CD. The stoichiometric ratio and binding constants for the inclusion complex formed by CM-ß-CD and enantiomer were determined, which showed that the stoichiometric ratio for each inclusion complex was 1:1.


Asunto(s)
Cromatografía de Fase Inversa , beta-Ciclodextrinas , Cromatografía de Fase Inversa/métodos , Estereoisomerismo , Cromatografía Líquida de Alta Presión/métodos , beta-Ciclodextrinas/química , Indicadores y Reactivos
4.
J Sep Sci ; 46(23): e2300489, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786265

RESUMEN

The solvation parameter model was used in this study to investigate various intermolecular interactions that influence retention on the standard C18 stationary phase for the solvent system acetonitrile:methanol (ACN:MeOH, 1:1). In comparison to the organic mobile phase modifiers acetonitrile, acetone, methanol, 2-propanol, and tetrahydrofuran, the solvent strength for the ACN:MeOH (1:1) solvent system was evaluated. To facilitate the interpretation of various intermolecular interactions that contribute to retention on a standard C18 stationary phase for the solvent system ACN:MeOH (1:1), system maps were constructed and compared with those of acetone, tetrahydrofuran, acetonitrile, 2-propanol, and methanol. The solvation parameter models were constructed for the ternary solvent system ACN:MeOH (1:1)-water, and in the models constructed, the coefficient of determination values were from 0.998 to 0.999, the Fisher statistic values for the models were from 1687 to 4015, and the standard error of the estimate values ranged from 0.022 to 0.029. The solvent system ACN:MeOH (1:1) has retention properties more similar to methanol than acetonitrile, indicating methanol's influence is more dominant.

5.
J Sep Sci ; 46(19): e2300449, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37582637

RESUMEN

This study used reversed-phase liquid chromatography-tandem mass spectrometry and supercritical fluid chromatography-tandem mass spectrometry for determination of the stereoisomers of chlorfenvinphos and dimethylvinphos in tobacco. Tobacco samples were extracted and purified with a modified quick, easy, cheap, effective, rugged, and safe technique using spherical carbon. The performance of both methodologies was comprehensively compared in terms of methods validation parameters (separation efficiency, linearity, selectivity, recovery, repeatability, sensitivity, matrix effect, etc.). Under optimized conditions, the calibration curves of the stereoisomers of chlorfenvinphos and dimethylvinphos in the range of 10-500 ng/mL showed excellent linearity with R2 ≥ 0.997 in both methods. The adequate recoveries of analytes from three different spiked tobaccos were obtained using reversed-phase liquid chromatography-tandem mass spectrometry (86.1-95.7%) as well as supercritical fluid chromatography-tandem mass spectrometry (86.5-94.0%). The relative standard deviations for spiked samples were all below 7.0%. Compared with supercritical fluid chromatography-tandem mass spectrometry, lower matrix effects and LODs can be obtained in reversed-phase liquid chromatography-tandem mass spectrometry.


Asunto(s)
Clorfenvinfos , Cromatografía con Fluido Supercrítico , Espectrometría de Masas en Tándem/métodos , Nicotiana/química , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos
6.
J Sep Sci ; 46(10): e2200704, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36896497

RESUMEN

Ziziphi spinosae semen has been widely used to treat insomnia and anxiety. To profile its chemical components, an online comprehensive two-dimensional liquid chromatography-mass spectrometry was developed. In this two-dimensional liquid chromatography system, a novel phthalic anhydride-bonded stationary phase column was combined with a C18 column. As a result, this new stationary phase exhibited remarkable differences in separation selectivity from C18, achieving a good orthogonality of 83.3%. Moreover, this new stationary phase with weaker hydrophobicity than C18 realized solvent compatibility in the online configuration. Coupled with tandem MS, 154 compounds were identified, including 51 unreported compounds. Compared with one-dimensional liquid chromatography-mass spectrometry, this online two-dimensional liquid chromatography-mass spectrometry system exhibited a much higher resolving power in isomer separation. This work provided an effective separation and characterization method for the material basis of Ziziphi spinosae semen. This strategy provides ideas for the material basis research of other traditional Chinese medicines.


Asunto(s)
Anhídridos Ftálicos , Semillas , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Espectrometría de Masas/métodos
7.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985597

RESUMEN

In the context of targeted radionuclide therapy, antibody-chelator conjugates (ACCs) are an evolving class of antibody-related drugs with promising applications as tumor-targeted pharmaceuticals. Generally, a typical ACC consists of a recombinant monoclonal antibody (mAb) coupled to radionuclide via a chelating agent. Characterizing the ACC structure represents an analytical challenge since various impurities must be constantly monitored in the presence of formulation components during the quality control (QC) process. In this contribution, a reliable method devoted to the monitoring of an ACC sample, and its small molecule-related synthesis impurities, has been developed via liquid chromatography (LC). A problem-solving approach of common analytical issues was used to highlight some major issues encountered during method development. This included separation of poorly retained impurities (issue #1); interferences from the formulation components (issue #2); analysis of impurities in presence of ACC at high concentration (issue #3); and recovery of impurities during the whole analytical procedure (issue #4). To the best of our knowledge, this is the first time that a chromatographic method for the analysis of ACC synthesis impurities is presented. In addition, the developed approach has the potential to be more widely applied to the characterization of similar ACCs and other antibody-related drugs.


Asunto(s)
Inmunoconjugados , Cromatografía Liquida , Inmunoconjugados/química , Anticuerpos Monoclonales/química , Radioisótopos , Cromatografía Líquida de Alta Presión/métodos
8.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903512

RESUMEN

The n-octanol-water partition coefficient (logP) is an important physicochemical parameter which describes the behavior of organic compounds. In this work, the apparent n-octanol/water partition coefficients (logD) of basic compounds were determined using ion-suppression reversed-phase liquid chromatography (IS-RPLC) on a silica-based C18 column. The quantitative structure-retention relationship (QSRR) models between logD and logkw (logarithm of retention factor corresponding to 100% aqueous fraction of mobile phase) were established at pH 7.0-10.0. It was found that logD had a poor linear correlation with logkw at pH 7.0 and pH 8.0 when strongly ionized compounds were included in the model compounds. However, the linearity of the QSRR model was significantly improved, especially at pH 7.0, when molecular structure parameters such as electrostatic charge ne and hydrogen bonding parameters A and B were introduced. External validation experiments further confirmed that the multi-parameter models could accurately predict the logD value of basic compounds not only under strong alkaline conditions, but also under weak alkaline and even neutral conditions. The logD values of basic sample compounds were predicted based on the multi-parameter QSRR models. Compared with previous work, the findings of this study extended the pH range for the determination of the logD values of basic compounds, providing an optional mild pH for IS-RPLC experiments.

9.
J Proteome Res ; 21(12): 2846-2892, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36355445

RESUMEN

The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.


Asunto(s)
Cromatografía de Fase Inversa , Proteómica , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Espectrometría de Masas/métodos , Péptidos/análisis , Proteómica/métodos
10.
Int J Mass Spectrom ; 4812022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36211475

RESUMEN

Cellular heterogeneity is commonly investigated using single-cell genomics and transcriptomics to investigate biological questions such as disease mechanism, therapeutic screening, and genomic and transcriptomic diversity between cellular populations and subpopulations at the cellular level. Single-cell mass spectrometry (MS)-based proteomics enables the high-throughput examination of protein expression at the single-cell level with wide applicability, and with spatial and temporal resolution, applicable to the study of cellular development, disease, effect of treatment, etc. The study of single-cell proteomics has lagged behind genomics and transcriptomics largely because proteins from single-cell samples cannot be amplified as DNA and RNA can using well established techniques such as PCR. Therefore, analytical methods must be robust, reproducible, and sensitive enough to detect the very small amount of protein within a single cell. To this end, nearly every step of the proteomics process has been extensively altered and improved to facilitate the proteomics analysis of single cells including cell counting and sorting, lysis, protein digestion, sample cleanup, separation, MS data acquisition, and data analysis. Here, we have reviewed recent advances in single-cell protein separation using nano reversed phase liquid chromatography (nRPLC) and capillary electrophoresis (CE) to inform application driven selection of separation techniques in the laboratory setting.

11.
J Sep Sci ; 45(9): 1487-1492, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35142441

RESUMEN

The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30-70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.


Asunto(s)
Cromatografía de Fase Inversa , Agua , Acetona , Acetonitrilos/química , Hidrógeno , Indicadores y Reactivos , Metanol/química , Dióxido de Silicio/química , Agua/química
12.
Mikrochim Acta ; 189(9): 360, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042107

RESUMEN

A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.


Asunto(s)
Aminas , Polímeros , Cromatografía Líquida de Alta Presión/métodos , Etanol , Porosidad , Reproducibilidad de los Resultados , Estereoisomerismo
13.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500399

RESUMEN

In the pharmaceutical field, and more precisely in quality control laboratories, robust liquid chromatographic methods are needed to separate and analyze mixtures of compounds. The development of such chromatographic methods for new mixtures can result in a long and tedious process even while using the design of experiments methodology. However, developments could be accelerated with the help of in silico screening. In this work, the usefulness of a strategy combining response surface methodology (RSM) followed by multicriteria decision analysis (MCDA) applied to predictions from a quantitative structure-retention relationship (QSRR) model is demonstrated. The developed strategy shows that selecting equations for the retention time prediction models based on the pKa of the compound allows flexibility in the models. The MCDA developed is shown to help to make decisions on different criteria while being robust to the user's decision on the weights for each criterion. This strategy is proposed for the screening phase of the method lifecycle. The strategy offers the possibility to the user to select chromatographic conditions based on multiple criteria without being too sensitive to the importance given to them. The conditions with the highest desirability are defined as the starting point for further optimization steps.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Preparaciones Farmacéuticas
14.
Molecules ; 27(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431815

RESUMEN

Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), ß2-adrenergic receptor (ß2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent ß2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to ß2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the ß2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM.


Asunto(s)
Curcuma , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno , Cromatografía Liquida/métodos , Espectrometría de Masas
15.
J Sep Sci ; 44(9): 1824-1832, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33586325

RESUMEN

Gangliosides are amphiphilic, acidic glycosphingolipids possessing one or more sialic acid residues and several isobaric structural isomers with different abundances and bioactivities. Therefore, the distinction between these isomers is crucial for their proper profiling. Although liquid chromatography-mass spectrometry has been successfully employed for this purpose, the distinction process can still be improved, particularly regarding liquid chromatography. Recently, a reversed-phase liquid chromatography method that could separate disialoganglioside isomers was reported; however, the distinction of trisialoganglioside isomers using reversed-phase liquid chromatography has not been demonstrated. Here, we investigated the practicality of a reversed-phase liquid chromatography with an octadecylsilane column for separating polysialoganglioside isomers and successfully achieved the isomer separation of disialogangliosides and trisialogangliosides for the first time. We also confirmed several crucial factors in the mobile-phase composition, which affect the differential retention and mass spectral response of the isomers. First, an organic modifier, acetonitrile, exhibited superior selectivity against polysialogangliosides over methanol. Second, ammonium bicarbonate was the best ammonium salt additive among those tested, in terms of the separation efficiency and mass spectral response. Third, as the ammonium salt concentration increased, the negative electrospray ionization response was extensively suppressed, and the retention of gangliosides increased.


Asunto(s)
Gangliósidos/análisis , Polímeros/análisis , Tensoactivos/análisis , Cromatografía de Fase Inversa , Isomerismo , Espectrometría de Masas
16.
J Sep Sci ; 44(16): 3070-3079, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34165880

RESUMEN

Quil-A is a purified extract of saponins with strong immunoadjuvant activity. While specific molecules have been identified and tested in clinical trials, Quil-A is mostly used as a totum of the Quillaja Saponaria bark extract. Quality control of the extract stability is usually based on the monitoring of specific saponins, whereas the comparison of samples with an initial chromatogram seems more appropriate. A reference fingerprint based on comprehensive two-dimensional liquid chromatography offers a rapid detection of nonconform samples. To fulfill quality control constraints, off-line configuration using basic instrumentation was promoted. Hence, reversed-phase liquid chromatography × reversed-phase liquid chromatography and hydrophilic interaction chromatography × reversed-phase liquid chromatography methods with ultraviolet and single-quadrupole mass spectrometry detection were kinetically optimized. The reversed-phase liquid chromatography × reversed-phase liquid chromatography method used a pH switch between dimensions to maximize orthogonality. Despite diagonalization, it led to a high peak capacity of 831 in 2 h. On the other hand, the combination of hydrophilic interaction chromatography and reversed-phase liquid chromatography offered a larger orthogonality but a lower, yet satisfactory peak capacity of 673. The advantages of both methods were illustrated on degraded samples, where the reversed-phase liquid chromatography × reversed-phase liquid chromatography contour plot highlighted the loss of fatty acid chains, while the hydrophilic interaction chromatography × reversed-phase liquid chromatography method was found useful to evidence enzymatic loss of sugar moieties.


Asunto(s)
Técnicas de Química Analítica , Cromatografía Liquida/métodos , Quillaja/metabolismo , Saponinas/análisis , Cromatografía de Fase Inversa/métodos , Cinética , Corteza de la Planta/metabolismo , Extractos Vegetales/análisis , Control de Calidad , Saponinas de Quillaja/análisis , Valores de Referencia
17.
J Sep Sci ; 44(10): 2020-2028, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33629802

RESUMEN

Developing methods for the isolation of highly polar compounds from complex samples is of great significance. In this study, three polyoxins were successfully isolated from a complex sample (PN1-1# ) by preparative high-performance liquid chromatography. Separation was carried out on five polar reversed-phase stationary phases, using pure aqueous as mobile phase, where the C18HC column can provide the best performance for PN1-1# . Next, the effects of the mobile phase composition were studied. It was found that adding NaClO4 can enhance the retention and resolution, and adding NaH2 PO4 was beneficial to maintain good peak shapes when the sample loading increased. Therefore, the optimized mobile phase consisting of 20 mmol NaH2 PO4 and 20 mmol NaClO4 (adding H3 PO4 to adjust pH 2) was used to separate PN1-1# . This method of using 100% aqueous phase can effectively improve both the retention and the solubility of polar samples. Eventually, through further purification, three compounds, namely, polyoxins B, D, and G, were obtained. This paper provided an effective and eco-friendly strategy for the preparative-scale separation of polar samples.

18.
Anal Bioanal Chem ; 412(18): 4423-4432, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32377867

RESUMEN

In the present work, the human chorionic gonadotropin (hCG) hormone was characterized for the first time by hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution (HR) quadrupole/time-of-flight (qTOF) mass spectrometry (MS) at the intact level. This heterodimeric protein, consisting of two subunits (hCGα and hCGß), possesses 8 potential glycosylation sites leading to a high number of glycoforms and has a molecular weight of about 35 kDa. The HILIC conditions optimized in a first paper but using UV detection were applied here with MS for the analysis of two hCG-based drugs, a recombinant hCG and a hCG isolated from the urine of pregnant women. An amide column (150 × 2.1 mm, 2.6 µm, 150 Å), a mobile phase composed of acetonitrile and water both containing 0.1% of trifluoroacetic acid, and a temperature of 60 °C were used. The gradient was from 85 to 40% ACN in 30 min. The use of TFA that had been shown to be necessary for the separation of glycoforms caused, as expected, an ion suppression effect in MS that was partially overcome by increasing the amount of protein injected (2 µL at 1 mg mL-1) and reducing the detection m/z range (from 1500 to 300). These conditions allowed the detection of different glycoforms of hCGα. The performance of the HILIC-HRMS method was compared with that previously obtained in RPLC-HRMS in terms of the number of detected glycoforms, selectivity, and sensitivity. The complementarity and orthogonality of the HILIC and RP modes for the analysis of hCG at the intact level were demonstrated.


Asunto(s)
Gonadotropina Coriónica/análisis , Hormonas Glicoproteicas de Subunidad alfa/análisis , Gonadotropina Coriónica/orina , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Femenino , Hormonas Glicoproteicas de Subunidad alfa/orina , Glicosilación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas/métodos , Embarazo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/orina
19.
J Sep Sci ; 43(8): 1423-1430, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32003152

RESUMEN

An online high-pH reversed-phase liquid chromatography× low-pH reversed-phase liquid chromatography tandem electrospray ionization mass spectrometry combined with pulse elution gradient in the first dimension was constructed to separate and identify alkaloids from Macleaya cordata (willd.) R. Br. The modulation was performed by using a dual second dimensional columns interface combined with a make-up dilution pump, which is responsible for dilution and neutralization of the first dimensional effluent, and the dual second dimensional columns integrated the trapping and the separation function to reduce the second dimension system dead volume. Taking advantage of the dissociable characteristics of alkaloids, mobile phases with different pH values were applied in the first dimension (pH 9.0) and the second dimension (pH 2.6) to improve the orthogonality of two-dimension separation. Besides, the pulse elution gradient in first dimension and second dimensional gradient were carefully optimized and much better separation was achieved compared to the separation with the traditional two-dimensional liquid chromatography approach. Finally, mass measurement was performed for alkaloids in M. cordata (willd.) R. Br. by coupling proposed two-dimensional liquid chromatography system with triple quadrupole mass spectrometry, and 39 alkaloids were successfully identified by comparing the obtained result with the former reported results.


Asunto(s)
Alcaloides/análisis , Papaveraceae/química , Cromatografía Liquida , Cromatografía de Fase Inversa , Concentración de Iones de Hidrógeno , Espectrometría de Masa por Ionización de Electrospray
20.
J Sep Sci ; 43(20): 3868-3875, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32776661

RESUMEN

A novel approach for the simultaneous separation and indirect ultraviolet detection of chlorate and perchlorate using pyridinium ionic liquids as mobile phase additives in reversed-phase liquid chromatography was developed. Pyridinium ionic liquids and imidazolium ionic liquids as the mobile phase additives were compared. The effects of pyridinium ionic liquids, methanol, column temperature, and detection wavelength on the separation and detection of chlorate and perchlorate were investigated. The role of ionic liquids, retention rules and relevant mechanisms were discussed. Pyridinium ionic liquids mainly acted as ultraviolet absorption reagent and ion-pair reagent. The successful separation and indirect ultraviolet detection of chlorate and perchlorate were achieved by using a common reversed-phase column, 0.2 mmol/L N-octylpyridinium bromide aqueous solution/methanol (90/10, v/v) as mobile phase and at the detection wavelength of 210 nm. The retention times of chlorate and perchlorate were 30.51 and 37.06 min, respectively. The detection limits of chlorate and perchlorate were 0.16 and 0.29 mg/L, respectively. The linearity and repeatability of the method were satisfactory. The approach was used to the analysis of river water samples with accurate and reliable results. This method is easy to popularize due to the use of common reversed-phase column and ultraviolet detector in liquid chromatography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA