Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chemistry ; 30(51): e202402148, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38962899

RESUMEN

The high risk of CO poisoning justifies the need for indoor air quality control and warning systems based on the detection of low concentrations (ppm-ppb) of CO. Cobalt corrole complexes selectively bind CO vs. O2, CO2, N2, opening new fields of applications. By combining the CO chemisorption properties of cobalt corroles with the known sorption capacity of MOFs, we hope to obtain high performance sensing materials for CO detection. In addition, the exposed metal sites of MOFs lead to CO2 physisorption, allowing the co-detection of CO and CO2. In this work, PCN-222, a stable Zr-based MOF made from Ni(TCPP) with natural vacancies, has been used as a porous matrix for the grafting of electron-poor metallocorroles. The materials were characterized by powder XRD, SEM and optical microscopy, BET analyses and gas adsorption measurements at 298 K. No degradation of the crystalline structure of PCN-222 was observed. At 1 atm, the adsorbed CO(g) volumes measured for the best materials were 12.15 cm3 g-1 and 14.01 cm3 g-1 for CoCorr2@PCN-222 and CoCorr3@PCN-222 respectively, and both materials exhibited high CO chemisorption and selectivity against O2, N2, and CO2 at low pressure due to the highest energy of the chemisorption process vs physisorption.

2.
Molecules ; 28(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110686

RESUMEN

Removal of benzene is essential for human and environmental health because it has toxic and hazardous properties at various concentrations. Theseneed to be effectively eliminated with carbon-based adsorbents. PASACs, carbon-based adsorbents obtained from using the needles of Pseudotsuga menziesii, were produced by optimized HCl- and H2SO4-impregnated approaches. Regarding physicochemical structure, the optimized PASAC23 and PASAC35 with surface areas of 657 and 581 m2/g and total pore volumes of 0.36 and 0.32 cm3/g showed ideal temperatures of 800 °C. In order to investigate and compare internal benzene removal efficiency, PASAC23 and PASAC35 were studied separately. Initial concentrations were found to range from 5 to 500 mg/m3, and between 25 and 45 °C. The removal rate of benzene by PASAC23 and PASAC35 was 97 and 94% at low concentrations, respectively. While the highest capture amount for PASAC23 and PASAC35 was found to be at 25 °C with 141 and 116 mg/g, the adsorption capacity decreased to 102 and 90 mg/g at 45 °C. The holding capacity decreased between 22.41 and 27.66% due to increasing temperatures. After five cycles of PASAC23 and PASAC35 regeneration, we found that they could remove 62.37 and 58.46% of benzene, respectively. These results confirmed that PASAC23 is a promising environmentally adsorbent for effectively removing benzene with a competitive yield.

3.
Molecules ; 26(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808850

RESUMEN

The effective separation of dimethyl carbonate (DMC) from its methanol mixture through simple, inexpensive and low energy-input method is a promising and challenging field in the process of organic synthesis. Herein, a reversible adsorption strategy through the assistance of superbase and CO2 for DMC/methanol separation at ambient condition was described. The process was demonstrated effectively via the excellent CO2 adsorption efficiency. Notably, the protocol was also suitable to other alcohol (i.e., monohydric alcohol, dihydric alcohol, trihydric alcohol) mixtures. The study provided guidance for potential separation of DMC/alcohol mixture in the scale-up production.

4.
Angew Chem Int Ed Engl ; 59(19): 7377-7383, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32050046

RESUMEN

DNA encoded libraries (DEL) have shown promise as a valuable technology for democratizing the hit discovery process. Although DEL provides relatively inexpensive access to libraries of unprecedented size, their production has been hampered by the idiosyncratic needs of the encoding DNA tag relegating DEL compatible chemistry to dilute aqueous environments. Recently reversible adsorption to solid support (RASS) has been demonstrated as a promising method to expand DEL reactivity using standard organic synthesis protocols. Here we demonstrate a suite of on-DNA chemistries to incorporate medicinally relevant and C-S, C-P and N-S linkages into DELs, which are underrepresented in the canonical methods.


Asunto(s)
ADN/síntesis química , Adsorción , Técnicas de Química Sintética , Técnicas Químicas Combinatorias , Descubrimiento de Drogas , Indicadores y Reactivos , Bibliotecas de Moléculas Pequeñas , Solubilidad , Sulfonas/química , Sulfóxidos/química
5.
Macromol Rapid Commun ; 39(14): e1800017, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29575269

RESUMEN

The reversible electrostatic adsorption of the cationic dye methylene blue (MB) as a model compound to polydehydroalanine (PDha)-coated magnetic multicore nanoparticles (MCNP) is presented. The pH responsiveness of the zwitterionic coating material enables reversible switching of the net surface charge of the PDha@MCNP hybrid particles by changes in pH and thus allows reversible adsorption of MB at neutral pH and desorption at low pH values. The resulting hybrid materials can be very interesting systems in the context of water purification, and the reversible adsorption is studied using UV-vis spectroscopy under varying surrounding conditions. The particles are characterized using dynamic light scattering, zeta potential measurements, transmission electron microscopy, and thermogravimetric analysis.


Asunto(s)
Colorantes/química , Nanopartículas de Magnetita/química , Azul de Metileno/química , Purificación del Agua , Adsorción , Cationes , Colorantes/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/química
6.
Nano Lett ; 17(4): 2220-2228, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28338328

RESUMEN

Facile/sustainable utilization of sulfur active materials is an ultimate challenge in high-performance lithium-sulfur (Li-S) batteries. Here, as a membrane-driven approach to address this issue, we demonstrate a new class of polysulfide-breathing (capable of reversibly adsorbing and desorbing polysulfides)/dual (electron and ion) conductive, heterolayered battery separator membranes (denoted as "MEC-AA separators") based on 0D (nanoparticles)/1D (nanofibers) composite mats. The MEC-AA separator is fabricated through an in-series, concurrent electrospraying/electrospinning process. The top layer of the MEC-AA separator comprises close-packed mesoporous MCM-41 nanoparticles spatially besieged by multiwalled carbon nanotubes (MWNT) wrapped poly(ether imide) (PEI) nanofibers. The MCM-41 in the top layer shows reversible adsorption/desorption of polysulfides, and the MWNT-wrapped PEI nanofibers act as a dual-conductive upper current collector. Preferential deposition of the MWNTs along the PEI nanofibers and dispersion state of the separator components are elucidated theoretically using computational methods. The support layer, which consists of densely packed Al2O3 nanoparticles and polyacrylonitrile nanofibers, serves as a mechanically/thermally stable and polysulfide-capturing porous membrane. The unique structure and multifunctionality of the MEC-AA separator allow for substantial improvements in redox reaction kinetics and cycling performance of Li-S cells far beyond those achievable with conventional polyolefin separators. The heterolayered nanomat-based membrane strategy opens a new route toward electrochemically active/permselective advanced battery separators.

7.
Macromol Biosci ; 24(2): e2300230, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37572335

RESUMEN

With the incorporation of polyampholytic segments into soft matter, hydrogels can serve as a reservoir for a variety of charged molecules which can be caught and released upon changes in pH value. Asymmetric block extension of one arm for star-shaped poly(ethylene glycol) [PEG26 -SH]4 using short segments of polyampholytic poly(dehydroalanine) (PDha) is herein demonstrated while maintaining the functional thiol end groups for network formation. For subsequent hydrogel synthesis with up to 10 wt.% PDha a straightforward and biocompatible photoinitiated thiol-ene click reaction is exploited. The investigation of the swelling properties of the hydrogel revealed responsive behavior toward ionic strength and variations in pH value. Moreover, the reversible adsorption of the model dyes methylene blue (MB) and acid orange 7 (AO7) is investigated by UV-vis measurements and the procedure can be successfully transferred to the adsorption of the adhesion peptide RGDS resulting in an uptake of 1.5 wt% RGDS with regard to the dry weight of the hydrogel.


Asunto(s)
Alanina/análogos & derivados , Péptidos , Compuestos de Sulfhidrilo , Materiales Biocompatibles/química , Hidrogeles/química , Polietilenglicoles/química
8.
Macromol Biosci ; 24(5): e2300383, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102978

RESUMEN

The use of PEG-based hydrogels as cell culture matrix to mimic the natural extracellular matrix (ECM) has been realized using a range of well-defined, tunable, and dynamic scaffolds, although they require cell adhesion ligands such as RGDS-peptide (Arg-Gly-Asp-Ser) to promote cell adhesion. Herein the synthesis of ionic and degradable hydrogels is demonstrated for cell culture by crosslinking [PEG-SH]4 with the zwitterionic crosslinker N,N-bis(acryloxyethyl)-N-methyl-N-(3-sulfopropyl) ammonium betaine (BMSAB) and the cationic crosslinker N,N-bis(acryloxyethyl)-N,N-dimethyl-1-ammonium iodide (BDMAI). Depending on the amount of ionic crosslinker used in gel formation, the hydrogels show tunable gelation time and stiffness. At the same time, the ionic groups act as catalysts for hydrolytic degradation, thereby allowing to define a stability window. The latter could be tailored in a straightforward manner by introducing the non-degradable crosslinker tri(ethylene glycol) divinyl ether. In addition, both ionic crosslinkers favor cell attachment in comparison to the pristine PEG hydrogels. The degradation is examined by swelling behavior, rheology, and fluorescence correlation spectroscopy indicating degradation kinetics depending on diffusion of incorporated fluorescent molecules.


Asunto(s)
Hidrogeles , Polietilenglicoles , Hidrogeles/química , Hidrogeles/síntesis química , Polietilenglicoles/química , Técnicas de Cultivo de Célula/métodos , Reactivos de Enlaces Cruzados/química , Humanos , Adhesión Celular/efectos de los fármacos , Animales , Matriz Extracelular/química , Matriz Extracelular/metabolismo
9.
ACS Appl Mater Interfaces ; 16(37): 49935-49943, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39253788

RESUMEN

Reversible cycling of rare-earth elements between an aqueous electrolyte solution and its free surface is achieved by X-ray exposure. This exposure alters the competitive equilibrium between lanthanide ions bound to a chelating ligand, diethylenetriamine pentaacetic acid (DTPA), in the bulk solution and to insoluble monolayers of extractant di-hexadecyl phosphoric acid (DHDP) at its surface. Evidence for the exposure-induced temporal variations in the lanthanide surface density is provided by X-ray fluorescence near total reflection measurements. Comparison of results when X-rays are confined to the aqueous surface region to results when X-rays transmit into the bulk solution suggests the importance of aqueous radiolysis in the adsorption cycle. Amine binding sites in DTPA are identified as a likely target of radiolysis products. The molecules DTPA and DHDP are like those used in the separation of lanthanides from ores and in the reprocessing of nuclear fuel. These results suggest that an external source of X-rays can be used to drive rare-earth element separations. More generally, use of X-rays to controllably dose a liquid interface with lanthanides could trigger a range of interfacial processes, including enhanced metal ion extraction, catalysis, and materials synthesis.

10.
Water Res ; 258: 121789, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772320

RESUMEN

Recovery of ammonium from wastewater represents a sustainable strategy within the context of global resource depletion, environmental pollution and carbon neutralization. The present study developed an advanced self-reporting electroswitchable colorimetric platform (SECP) to realize smart ammonium recovery based on the electrically stimulated transformation of Prussian blue/Prussian white (PB/PW) redox couple. The key to SECP was the selectivity of ammonium adsorption, sensitivity of desorption to electric signals and visualability of color change during switchable adsorption/desorption transformation. The results demonstrated the electrochemical intercalation-induced selective adsorption of NH4+ (selectivity coefficient of 3-19 versus other cations) and deintercalation-induced desorption on the PB-film electrode. At applied voltage of 1.2 V for 20 min, the negatively charged PB-film electrode achieved the maximum adsorption capacity of 3.2 mmol g-1. Reversing voltage to -0.2 V for 20 min resulted in desorption efficiency as high as 99%, indicating high adsorption/desorption reversibility and cyclic stability. The Fe(III)/Fe(II) redox dynamics were responsible for PB/PW transformation during reversible intercalation/deintercalation of NH4+. Based on the blue/transparence color change of PB/PW, the quantitative relationship was established between amounts of NH4+ adsorbed and extracted RGB values by multiple linear regression (R2 = 0.986, RMSE = 0.095). Then, the SECP was created upon the unique capability of real-time monitoring and feedback of color change of electrode to realize the automatic control of NH4+ adsorption/desorption. During five cycles of tests, the adsorption process consistently peaked at an average value of 3.15±0.04 mmol g-1, while desorption reliably approached the near-zero average of 0.06±0.04 mmol g-1. The average time of duration was 19.6±1.67 min for adsorption and 18.8±1.10 min for desorption, respectively. With electroswitchability, selectivity and self-reporting functionalities, the SECP represents a paradigm shift in smart ammonium recovery from wastewater, making wastewater treatment and resource recovery more efficient, more intelligent and more sustainable.


Asunto(s)
Compuestos de Amonio , Colorimetría , Aguas Residuales , Aguas Residuales/química , Contaminantes Químicos del Agua , Adsorción , Electrodos , Oxidación-Reducción
11.
ACS Appl Mater Interfaces ; 13(20): 23811-23821, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33979521

RESUMEN

Lithium-sulfur batteries are attractive because of their high specific capacity and energy density, but issues with the polysulfide dissolution and shuttling intrinsically hinder their wide application. Here, hydroxylate multiwalled carbon nanotubes (MWCNT-OH) were grafted with a supramolecular polymer (heptakis(6-amino-6-deoxy)-ß-cyclodextrin) to form a polysulfide-engulfing net, which was coated on a separator. Such a molecular microarray structure of a polymer can block the polysulfides and have biomimetic cellular behavior for engulfing polysulfides. The cavity (∼6 Å) and functional groups of the supramolecular polymer can provide a dynamic structure for reversible adsorption of polysulfides while the conductive MWCNT-OH ensure fast electron transfer. The batteries with the modified separator exhibited excellent rate capacities (945.5 and 625.4 mA h g-1 at 2 C and 4 C rates, respectively). Especially, the high areal capacities of 5.86 and 7.2 mA h cm-2 achieved at S loadings of 4.5 and 6.0 mg cm-2 and good cycling stability after 200 cycles at 0.1 C can be obtained. This demonstrates a strategy of supramolecular polymer-grafted carbon for dynamic polysulfide adsorption toward advanced Li-S batteries.

12.
ACS Appl Mater Interfaces ; 11(2): 2218-2224, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30582695

RESUMEN

Graphene oxide (GO) is not only a unique class of two-dimensional (2D) materials but also an important precursor for scalable preparation of graphene. The efficient size fractionation of GO is of great importance to the fundamental and applied studies of chemically modified graphene, but remains a great challenge. Herein, we report an efficient and scalable fractionation method of GO employing reversible adsorption/desorption of temperature-responsive poly( N-isopropylacrylamide) on GO to amplify its mass difference and significantly improve the fractionation efficiency. Furthermore, size-dependent sodium ion storage of the resulting fractionated reduced GO (RGO) is revealed for the first time with high sodium storage performance achieved for the smallest RGO because of its largest d-spacing and most defect sites. This work provides valuable insights into the size fractionation and size-dependent electrochemical performance of graphene, which can be potentially extended to other 2D materials.

13.
ACS Appl Mater Interfaces ; 6(20): 18087-97, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25249268

RESUMEN

Novel dendronized silica substrates were synthesized. First- and second- generation polyaryl ether dendrons were appended to silica surfaces. Using Cu(I) mediated cycloaddition "click" chemistry, ß-cyclodextrin was tethered to the dendronized surfaces and to a nondendronized surface for comparison purposes. This synthesis strategy affords a modular, versatile method for surface functionalization in which the density of functional groups can be readily varied by changing the generation of dendron used. The surfaces, which are capable of adsorbing target analytes, have been characterized and studied using X-ray photoelectron spectroscopy (XPS) and vibrational sum frequency spectroscopy (VSFS). Fluorescence spectroscopy was used to study the surfaces' ability to retain coumarin 152 (C152). These studies indicated that the ß-cyclodextrin functionalized surfaces not only adsorbed C152 but also retained it through multiple aqueous washes. Furthermore, these observations were quantified and show that substrates functionalized with first-generation dendrons have a more than 6 times greater capacity to adsorb C152 than slides functionalized with monomeric ß-cyclodextrin. The first-generation dendrons also have 2 times greater the capacity than the larger generation dendrons. This result is explained by describing a dendron that has an increased number of ß-cyclodextrin monomers but, when covalently bound to silica, has a footprint too large to optimize the number of accessible monomers. Overall, both dendronized surfaces demonstrated an increased capacity to adsorb targeted analytes over the slides functionalized with monomeric ß-cyclodextrin. The studies reported provide a methodology for characterizing and evaluating the properties of novel, highly functional surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA