Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(28): 12621-12632, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38954776

RESUMEN

The majority of microplastics (MPs) found in the environment originate from plastic fragmentation occurring in the environment and are influenced by environmental factors such as UV irradiation and biotic interactions. However, the effects of river drying on plastic fragmentation remain unknown, despite the global prevalence of watercourses experiencing flow intermittence. This study investigates, through laboratory experiments, the coupled effects of drying duration and UV irradiation on PVC film fragmentation induced by artificial mechanical abrasion. This study shows that PVC film fragmentation increases with drying duration through an increase in the abundance and size of formed MPs as well as mass loss from the initial plastic item, with significant differences for drying durations >50% of the experiment duration. The average abundance of formed MPs in treatments exposed to severe drying duration was almost two times higher than in treatments nonexposed to drying. Based on these results, we developed as a proof of concept an Intermittence-Based Plastic Fragmentation Index that may provide insights into plastic fragmentation occurring in river catchments experiencing large hydrological variability. The present study suggests that flow intermittence occurring in rivers and streams can lead to increasing plastic fragmentation, unraveling new insights into plastic pollution in freshwater systems.


Asunto(s)
Microplásticos , Cloruro de Polivinilo , Ríos , Ríos/química , Cloruro de Polivinilo/química , Contaminantes Químicos del Agua , Rayos Ultravioleta , Monitoreo del Ambiente , Desecación
2.
New Phytol ; 240(6): 2265-2275, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37789694

RESUMEN

Grasslands recovering from drought have repeatedly been shown to outperform non-drought-stressed grasslands in biomass production. The mechanisms that lead to the unexpectedly high biomass production in grasslands recovering from drought are, however, not understood. To disentangle plant-intrinsic and plant-extrinsic (soil) drought legacy effects on grassland recovery from drought, we designed a factorial field experiment where Lolium perenne plants that were exposed to either a 2-month drought or to well-watered control conditions were transplanted into control and drought-stressed soil and rewetted thereafter. Drought and rewetting (DRW) resulted in negative drought legacy effects of formerly drought-stressed plants (DRWp ) compared with control plants (Ctrp ) when decoupled from soil-mediated DRW effects, with DRWp showing less aboveground productivity (-13%), restricted N nutrition, and higher δ13 C compared with Ctrp . However, plants grown on formerly drought-stressed soil (DRWs ) showed enhanced aboveground productivity (+82%), improved N nutrition, and higher δ13 C values relative to plants grown on control soil (Ctrs ), irrespective of the plants' pretreatment. Our study shows that the higher post-drought productivity of perennial grasslands recovering from drought relative to non-drought-stressed controls is induced by soil-mediated DRW legacy effects which improve plant N nutrition and photosynthetic capacity and that these effects countervail negative plant-intrinsic drought legacy effects.


Asunto(s)
Pradera , Suelo , Sequías , Plantas , Biomasa , Ecosistema
3.
Glob Chang Biol ; 29(13): 3678-3691, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029755

RESUMEN

Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4 ) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long-term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non-inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long-term measurements.


Asunto(s)
Ecosistema , Metano , Typhaceae , Dióxido de Carbono/análisis , Pradera , Suelo , Agua , Humedales
4.
J Environ Manage ; 327: 116922, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462490

RESUMEN

Drying-rewetting (D-RW) cycles can induce changes in biofilms by forcing the microbial community to tolerate and adapt to environmental pressure. Existing studies have mostly focused on the impact of D-RW cycles on the microbial community structure, and little attention has been paid to how D-RW cycles may change the biofilm tolerance and adsorption of heavy metals. We experimentally evaluated the effect of repeated D-RW cycles on the Cd2+ and Pb2+ adsorption and tolerance of biofilms. The equilibrium adsorption capacity of the biofilm decreased as the number of D-RW cycles was increased, which was attributed to a change in affinity between the biofilm and metal ions. For a binary metal system, the D-RW cycles affected the competitive adsorption of Cd2+ and Pb2+ by the biofilm. A synergistic effect was observed with one and three D-RW cycles, while an antagonistic effect was observed for the control film and five D-RW cycles. The tolerance of the biofilm to Cd2+ and Pb2+ increased with the number of D-RW cycles. The stress from the D-RW cycles may have increased the relative abundance of drought-tolerant bacteria, which altered the biofilm functions and thus indirectly affected the heavy metal adsorption capacity.


Asunto(s)
Cadmio , Metales Pesados , Cadmio/farmacología , Adsorción , Plomo , Biopelículas
5.
J Environ Manage ; 333: 117462, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758413

RESUMEN

In the Mediterranean arid region such as Southeast (SE) Spain, a considerable part of the fluvial network runs permanently dry. Here, many dry watercourses are embedded in catchments where agriculture has brought changes in carbon (C) and nitrogen (N) availability due to native riparian vegetation removal and the establishment of intensive agriculture. Despite their increasing scientific recognition and vulnerability, our knowledge about dry riverbeds biogeochemistry and environmental drivers is still limited, moreover for developing proper management plans at the whole catchment scale. We examined CO2 and N2O emissions in five riverbeds in SE Spain of variable agricultural impact under dry and simulated rewetted conditions. Sediment denitrifying capacity upon rewetting was also assessed. We found that, regardless of agricultural impact, all riverbeds can emit CO2 under dry and wet conditions. Emissions of N2O were only observed in our study when a long-term rewetting driving saturated sediments was conducted. Besides, most biogeochemical capabilities were enhanced in summer, reflecting the sensitiveness of microbial activity to temperature. Biogeochemical processing variation across rivers appeared to be more controlled by availability of sediment organic C, rather than by agriculturally derived nitrate. We found that the studied dry riverbeds, agriculturally affected or not, may be active sources of CO2 and contribute to transitory N2O emissions during rewetting phenomena, potentially through denitrification. We propose that management plans aiming to support ecosystem biogeochemistry through organic C from native vegetation rather than agricultural exudates would help to reduce anthropogenic greenhouse gases emissions and excess of nutrients in the watershed and to control the nitrate inputs to coastal ecosystems.


Asunto(s)
Carbono , Nitrógeno , Nitrógeno/análisis , Ecosistema , Nitratos , Dióxido de Carbono/análisis , Agricultura , Compuestos Orgánicos , Óxido Nitroso/análisis , Suelo
6.
Glob Chang Biol ; 28(21): 6349-6365, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35904068

RESUMEN

Peatland rewetting has been proposed as a vital climate change mitigation tool to reduce greenhouse gas emissions and to generate suitable conditions for the return of carbon (C) sequestration. In this study, we present annual C balances for a 5-year period at a rewetted peatland in Ireland (rewetted at the start of the study) and compare the results with an adjacent drained area (represents business-as-usual). Hydrological modelling of the 230-hectare site was carried out to determine the likely ecotopes (vegetation communities) that will develop post-rewetting and was used to inform a radiative forcing modelling exercise to determine the climate impacts of rewetting this peatland under five high-priority scenarios (SSP1-1.9, SS1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). The drained area (marginal ecotope) was a net C source throughout the study and emitted 157 ± 25.5 g C m-2  year-1 . In contrast, the rewetted area (sub-central ecotope) was a net C sink of 78.0 ± 37.6 g C m-2  year-1 , despite relatively large annual methane emissions post-rewetting (average 19.3 ± 5.2 g C m-2  year-1 ). Hydrological modelling predicted the development of three key ecotopes at the site, with the sub-central ecotope predicted to cover 24% of the site, the sub-marginal predicted to cover 59% and the marginal predicted to cover 16%. Using these areal estimates, our radiative forcing modelling projects that under the SSP1-1.9 scenario, the site will have a warming effect on the climate until 2085 but will then have a strong cooling impact. In contrast, our modelling exercise shows that the site will never have a cooling impact under the SSP5-8.5 scenario. Our results confirm the importance of rapid rewetting of drained peatland sites to (a) achieve strong C emissions reductions, (b) establish optimal conditions for C sequestration and (c) set the site on a climate cooling trajectory.


Asunto(s)
Carbono , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Irlanda , Metano/análisis , Suelo , Humedales
7.
J Environ Manage ; 311: 114808, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245841

RESUMEN

Acidification and salinisation of groundwater and surface water bodies are worldwide problems in post-mining landscapes due to acid mine drainage (AMD). In this study, we hypothesised that highly decomposed peat offers a suitable substrate for mitigating AMD pollution of water bodies and that hydraulic load affects the removal efficiency of iron and sulphate. A lysimeter experiment was conducted mimicking peatland rewetting to quantify iron and sulphate removal and pH changes at different loading rates. The low initial pH of 4 rose to 6 and electrical conductivity declined by up to 47%. The initially high concentrations of iron (>250 mg/L) and sulphate (>770 mg/L) declined by, on average, 87 and 78%, respectively. The removal efficiency of sulphate was negatively correlated with either the hydraulic or the sulphate load, respectively, i. e. the lower the hydraulic load, the higher the removal efficiency of sulphate. However, the removal of iron was not explained by the load. The results imply that desulphurication and thus subsequent precipitation of iron sulphides was the main removal process and that peatland rewetting is an effective measure to mitigate AMD pollution of freshwater systems. For the heavily AMD-polluted studied section of the River Spree, we estimated by combining experimental with field data that a sulphate load reduction of the river by about 20% (36,827 tons/yr) will occur if all peatlands in the sub-catchment (6067 ha; 6.7% of the total area) are rewetted. Future investigations must show if the pollutant removal is declining over time in decomposed peat layers due to acidification and/or lack of bioavailable carbon and how the rewetting of peatland with AMD will affect the restoration of their ecosystem functioning in the long term.

8.
Ann Bot ; 127(3): 337-346, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33211793

RESUMEN

BACKGROUND AND AIMS: Forest peatlands represent 25 % of global peatlands and store large amounts of carbon (C) as peat. Traditionally they have been drained in order to increase forestry yield, which may cause large losses of C from the peat. Rewetting aims to stop these losses and to restore the initial storage function of the peatlands. As roots represent major peat-forming elements in these systems, we sampled roots with diameter <5 mm in a drained and a rewetted forest peatland in north-east Germany to evaluate differences in tree biomass investments below ground, root functional characteristics and root age. METHODS: We cored soil next to Alnus glutinosa stems and sorted root biomass into <1, 1-2 and 2-5 mm diameter classes. We measured biomass distribution and specific root area (SRA) in 10-cm depth increments down to 50 cm, and estimated root age from annual growth rings. KEY RESULTS: Root biomass in the rewetted site was more than double that in the drained site. This difference was mostly driven by very fine roots <1 mm, which accounted for 51 % of the total root biomass and were mostly (75 %) located in the upper 20 cm. For roots <1 mm, SRA did not differ between the sites. However, SRA of the 1-2 mm and 2-5 mm diameter roots was higher in the drained than in the rewetted site. Root age did not differ between sites. CONCLUSIONS: The size-dependent opposite patterns between root biomass and their functional characteristics under contrasting water regimes indicate differences between fine and coarse roots in their response to environmental changes. Root age distribution points to similar root turnover rates between the sites, while higher root biomass in the rewetted site clearly indicates larger tree C stocks below ground under rewetting, supporting the C sink function of the ecosystem.


Asunto(s)
Alnus , Biomasa , Ecosistema , Bosques , Raíces de Plantas , Suelo
9.
Ecol Appl ; 31(6): e02359, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33884709

RESUMEN

Globally, peatlands have been affected by drainage and peat extraction, with adverse effects on their functioning and services. To restore peat-forming vegetation, drained bogs are being rewetted on a large scale. Although this practice results in higher groundwater levels, unfortunately it often creates deep lakes in parts where peat was extracted to greater depths than the surroundings. Revegetation of these deeper waters by peat mosses appears to be challenging due to strong abiotic feedbacks that keep these systems in an undesired bare state. In this study, we theoretically explore if a floating peat mat and an open human-made bog lake can be considered two alternative stable states using a simple model, and experimentally test in the field whether stable states are present, and whether a state shift can be accomplished using floating biodegradable structures that mimic buoyant peat. We transplanted two peat moss species into these structures (pioneer sp. Sphagnum cuspidatum and later-successional sp. S. palustre) with and without additional organic substrate. Our model suggests that these open human-made bog lakes and floating peat mats can indeed be regarded as alternative stable states. Natural recovery by spontaneous peat moss growth, i.e., a state shift from open water to floating mats, is only possible when the water table is sufficiently shallow to avoid light limitation (<0.29 m at our site). Our experiment revealed that alternative stable states are present and that the floating structures facilitated the growth of pioneer S. cuspidatum and vascular plants. Organic substrate addition particularly facilitated vascular plant growth, which correlated to higher moss height. The structures remained too wet for the late-successional species S. palustre. We conclude that open water and floating peat mats in human-made bog lakes can be considered two alternative stable states, and that temporary floating establishment structures can induce a state shift from the open water state to peat-forming vegetation state. These findings imply that for successful restoration, there is a clear water depth threshold to enable peat moss growth and there is no need for addition of large amounts of donor-peat substrate. Correct species selection for restoration is crucial for success.


Asunto(s)
Briófitas , Agua Subterránea , Sphagnopsida , Humanos , Suelo , Humedales
10.
Glob Chang Biol ; 26(4): 2320-2335, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31837069

RESUMEN

Projected future climatic extremes such as heatwaves and droughts are expected to have major impacts on emissions and concentrations of biogenic volatile organic compounds (bVOCs) with potential implications for air quality, climate and human health. While the effects of changing temperature and photosynthetically active radiation (PAR) on the synthesis and emission of isoprene, the most abundant of these bVOCs, are well known, the role of other environmental factors such as soil moisture stress are not fully understood and are therefore poorly represented in land surface models. As part of the Wytham Isoprene iDirac Oak Tree Measurements campaign, continuous measurements of isoprene mixing ratio were made throughout the summer of 2018 in Wytham Woods, a mixed deciduous woodland in southern England. During this time, the United Kingdom experienced a prolonged heatwave and drought, and isoprene mixing ratios were observed to increase by more than 400% at Wytham Woods under these conditions. We applied the state-of-the-art FORest Canopy-Atmosphere Transfer canopy exchange model to investigate the processes leading to these elevated concentrations. We found that although current isoprene emissions algorithms reproduced observed mixing ratios in the canopy before and after the heatwave, the model underestimated observations by ~40% during the heatwave-drought period implying that models may substantially underestimate the release of isoprene to the atmosphere in future cases of mild or moderate drought. Stress-induced emissions of isoprene based on leaf temperature and soil water content (SWC) were incorporated into current emissions algorithms leading to significant improvements in model output. A combination of SWC, leaf temperature and rewetting emission bursts provided the best model-measurement fit with a 50% improvement compared to the baseline model. Our results highlight the need for more long-term ecosystem-scale observations to enable improved model representation of atmosphere-biosphere interactions in a changing global climate.

11.
Glob Chang Biol ; 25(5): 1591-1611, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30628191

RESUMEN

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56%-98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.


Asunto(s)
Nutrientes/análisis , Compuestos Orgánicos/análisis , Ríos/química , Biopelículas/crecimiento & desarrollo , Disponibilidad Biológica , Clima , Cambio Climático , Sedimentos Geológicos/química , Nitratos/análisis , Hojas de la Planta/química
12.
Glob Chang Biol ; 25(3): 1005-1015, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30387912

RESUMEN

Climate change will alter precipitation patterns with consequences for soil C cycling. An understanding of how fluctuating soil moisture affects microbial processes is therefore critical to predict responses to future global change. We investigated how long-term experimental field drought influences microbial tolerance to lower moisture levels ("resistance") and ability to recover when rewetted after drought ("resilience"), using soils from a heathland which had been subjected to experimental precipitation reduction during the summer for 18 years. We tested whether drought could induce increased resistance, resilience, and changes in the balance between respiration and bacterial growth during perturbation events, by following a two-tiered approach. We first evaluated the effects of the long-term summer drought on microbial community functioning to drought and drying-rewetting (D/RW), and second tested the ability to alter resistance and resilience through additional perturbation cycles. A history of summer drought in the field selected for increased resilience but not resistance, suggesting that rewetting after drought, rather than low moisture levels during drought, was the selective pressure shaping the microbial community functions. Laboratory D/RW cycles also selected for communities with a higher resilience rather than increased resistance. The ratio of respiration to bacterial growth during D/RW perturbation was lower for the field drought-exposed communities and decreased for both field treatments during the D/RW cycles. This suggests that cycles of D/RW also structure microbial communities to respond quickly and efficiently to rewetting after drought. Our findings imply that microbial communities can adapt to changing climatic conditions and that this might slow the rate of soil C loss predicted to be induced by future cyclic drought.


Asunto(s)
Aclimatación/fisiología , Sequías , Microbiología del Suelo , Suelo/química , Agua/análisis , Bacterias/crecimiento & desarrollo , Carbono/análisis , Cambio Climático , Estaciones del Año
13.
J Environ Manage ; 236: 510-518, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771671

RESUMEN

There is critical concern over heavy metals because they are biotoxins. The best management option is elimination or at least minimization of effluence into the environment, but in several regions, mining wastewater or acid mine drainage (AMD) effluence into natural wetlands has continued. The ability of wetlands to attenuate heavy metals in mining wastewater and AMD has led to natural wetlands being used as recipients of these effluents in many parts of the world. Ten greenhouse-based laboratory-scale constructed wetlands (GLCW) were set up at IHE-Delft Institute for Water Education to understand the mechanisms and fate of heavy metals in three Zambian wetlands in attenuation of Co, Cu, and Pb. These were operated as Free Water Surface Constructed Wetlands (FWS-CWs). The principal investigations compared how vegetated and unvegetated microcosm artificial wetlands retained controlled additions of heavy metals and the effect of drying and rewetting on that. The potential for phytoremediation using Typha angustifolia was also investigated. Typha angustifolia was planted in three vegetated and compared with one unvegetated treatment. Treatments A, B, and, the investigated, Treatment D received synthetic wastewater containing Co, Cu, and Pb, while a control, Treatment C, received tap water. Water samples were taken throughout the experiment, and sediment samples collected after the first flushing and before drying. Samples of T. angustifolia were taken before drying the wetlands. Analyses for Co, Cu, and Pb were made in the water and sediment, and in roots, stems and leaves of plant samples. The unvegetated Dutch sediments GLCWs removed more Co from wastewater (52%) than the vegetated Dutch and Zambian sediments GLCWs (13% and -4%, respectively). There was a similar removal of Cu among the GLCWs receiving wastewater (81%-87%). The removal of Pb was significantly higher in the vegetated Dutch sediment GLCWs than the unvegetated Dutch sediments GLCWs, (89% and 72%, respectively). It was concluded that a hectare of the vegetated Zambian sediments with similar design parameters of 50 mg/m2.day for Co, Cu, and Pb used in the experiment would on average retain 83 g/day of Co, and 417 g/day of both Cu and Pb. After drying, Co, Cu, and Pb washed out on the first day of rewetting. The washout after that took only a few days. How long the metals washed out of the GLCWs was in order Co > Cu > Pb. T. angustifolia could neither be classified as an accumulator nor an excluder species because the concentrations of Co, Cu, and Pb in the sediments and T. angustifolia were below phytotoxic levels mainly due to a short running period of the experiment.


Asunto(s)
Metales Pesados , Typhaceae , Contaminantes Químicos del Agua , Biodegradación Ambiental , Plomo , Humedales
14.
Microb Ecol ; 74(4): 877-887, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492987

RESUMEN

Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.


Asunto(s)
Archaea/fisiología , Cobre/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Agua/análisis , Archaea/efectos de los fármacos , China , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/efectos de los fármacos , Microbiota/fisiología , Reacción en Cadena de la Polimerasa , Suelo/química
15.
Clin Oral Investig ; 21(4): 1231-1241, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27376544

RESUMEN

OBJECTIVES: The objective of this study was to evaluate longitudinally the composite restorations, performed in cavities prepared by Er:YAG or conventional bur, and dentin re-wetting with water or chlorhexidine. MATERIALS AND METHODS: Twenty individuals with four active caries with cavitation reaching the dentin located on the occlusal surface of molars counterparts are selected. The teeth of each individual were randomly assigned into four groups: (I) Er:YAG laser (260 mJ/4 Hz) re-wetting with chlorhexidine, (II) Er:YAG laser (260 mJ/4 Hz) re-wetting with deionized water, (III) conventional method re-wetting with chlorhexidine, and (IV) conventional method re-wetting with deionized water. The teeth were isolated, prepared cavities, phosphoric acid etching, and re-wetting according to previously assigned method. Restoration was performed employing the Single Bond 2 and Z350XT resin. Clinical follow-up was held after the polishing of the restoration (baseline) and 6 and 12 months of the making of the restoration using the modified USPHS criteria. The restorations were qualitatively analyzed by means of photographs. In the evaluation period, replicas of the restorations were analyzed by SEM. Data were analyzed by statistics using chi-square test (p < 0.05). RESULTS: After 12 months of clinical evaluation, groups prepared with laser and re-wetting with chlorhexidine and water showed the lowest marginal staining value. There was no statistical difference between the groups for other factors. SEM analysis revealed that a non-expressive amount of restorations showed gaps and irregularities of tooth-restoration interface after 6 and 12 months compared to the baseline. CONCLUSION: The restorations performed in laser-prepared cavities, regardless of the re-wetting, presented the best clinical performance over the evaluated period. CLINICAL RELEVANCE: Laser-prepared teeth, regardless of re-wetting, showed greater resistance to marginal discoloration.


Asunto(s)
Resinas Compuestas/química , Caries Dental/terapia , Preparación de la Cavidad Dental/métodos , Láseres de Estado Sólido/uso terapéutico , Grabado Ácido Dental , Niño , Clorhexidina/uso terapéutico , Cementos Dentales , Femenino , Humanos , Curación por Luz de Adhesivos Dentales , Masculino , Microscopía Electrónica de Rastreo , Resultado del Tratamiento , Agua , Humectabilidad
16.
Mitig Adapt Strateg Glob Chang ; 22(7): 1041-1061, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30093822

RESUMEN

The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400-3000 Mg CO2 ha-1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440-1200 Mg CO2 ha-1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2 ha-1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.

17.
Glob Chang Biol ; 22(12): 4080-4095, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27099183

RESUMEN

Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long-term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2 ), methane (CH4 ) and nitrous oxide (N2 O) calculated for a 5-year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2-year data set), and with ten long-term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco ) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2 O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5-year mean of annual balances) for the rewetted site were (±SD) -104 ± 80 g CO2 -C m-2  yr-1 (i.e. CO2 sink) and 9 ± 2 g CH4 -C m-2  yr-1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100-year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.


Asunto(s)
Cambio Climático , Gases/análisis , Efecto Invernadero , Humedales , Dióxido de Carbono/análisis , Secuestro de Carbono , Irlanda , Metano/análisis , Óxido Nitroso/análisis , Suelo/química , Agua
18.
Glob Chang Biol ; 22(3): 1286-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26470015

RESUMEN

Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Suelo/química , Agricultura , California , Monitoreo del Ambiente , Análisis Multivariante
19.
J Environ Sci (China) ; 39: 155-164, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26899654

RESUMEN

Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance.


Asunto(s)
Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Cobre/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Biodiversidad , Estrés Fisiológico/efectos de los fármacos , Humectabilidad
20.
J Environ Manage ; 150: 412-419, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25567734

RESUMEN

We studied the long-term changes in groundwater composition in the context of peat restoration at a degraded water-table managed peatland site typical for many agriculturally used fen areas in the northern hemisphere. At the study site, peatland rewetting with groundwater control and pumped canal water was carried out in two periods: from 1997 to 2002 and from 2011 to 2013. The site was not managed between 2002 and 2011, which led to an unstable groundwater table that had declined in part. The aim of this study was to investigate the consequences of rewetting and desiccation on groundwater chemistry. We pursued a multivariate approach using nonlinear principal component analysis (Isomap) to identify the prevailing processes that control the groundwater quality in this system. Sixteen years after peatland restoration, the groundwater quality had significantly improved. Principal component analysis revealed that hydrological processes had a major impact on groundwater quality, i.e. fluctuations between upwelling of local, salt-influenced groundwater and downwelling of surface and rainwater (first principal component) as well as upwelling of regional groundwater from deeper layers (second principal component) which originated from the catchment. In particular, the upwelling of regional deep groundwater had a strong positive impact on the groundwater quality of upper layers at the Biesenbrow site. Another major impact on groundwater quality was nutrient withdrawal by macrophytes and incorporation into organic matter. In the upper groundwater layer, peat mineralization processes resulted in substantially increased SO4 concentrations. We concluded that potential matter release after rewetting is buffered by hydrological barriers, and seems to be marginal with little impact on adjacent environments in the long term. The ecosystem is sustainably stabilized, and therefore has no negative impact on groundwater quality during periods of water shortage. Due to the strong influence of regional groundwater, management measures in the catchment are very important for maintaining and improving groundwater quality in peatlands.


Asunto(s)
Ecosistema , Agua Subterránea/química , Plantas , Purificación del Agua/métodos , Humedales , Monitoreo del Ambiente , Restauración y Remediación Ambiental , Humanos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA