Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250753

RESUMEN

Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses another functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybean.

2.
BMC Plant Biol ; 24(1): 562, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877425

RESUMEN

BACKGROUND: On tropical regions, phosphorus (P) fixation onto aluminum and iron oxides in soil clays restricts P diffusion from the soil to the root surface, limiting crop yields. While increased root surface area favors P uptake under low-P availability, the relationship between the three-dimensional arrangement of the root system and P efficiency remains elusive. Here, we simultaneously assessed allelic effects of loci associated with a variety of root and P efficiency traits, in addition to grain yield under low-P availability, using multi-trait genome-wide association. We also set out to establish the relationship between root architectural traits assessed in hydroponics and in a low-P soil. Our goal was to better understand the influence of root morphology and architecture in sorghum performance under low-P availability. RESULT: In general, the same alleles of associated SNPs increased root and P efficiency traits including grain yield in a low-P soil. We found that sorghum P efficiency relies on pleiotropic loci affecting root traits, which enhance grain yield under low-P availability. Root systems with enhanced surface area stemming from lateral root proliferation mostly up to 40 cm soil depth are important for sorghum adaptation to low-P soils, indicating that differences in root morphology leading to enhanced P uptake occur exactly in the soil layer where P is found at the highest concentration. CONCLUSION: Integrated QTLs detected in different mapping populations now provide a comprehensive molecular genetic framework for P efficiency studies in sorghum. This indicated extensive conservation of P efficiency QTL across populations and emphasized the terminal portion of chromosome 3 as an important region for P efficiency in sorghum. Increases in root surface area via enhancement of lateral root development is a relevant trait for sorghum low-P soil adaptation, impacting the overall architecture of the sorghum root system. In turn, particularly concerning the critical trait for water and nutrient uptake, root surface area, root system development in deeper soil layers does not occur at the expense of shallow rooting, which may be a key reason leading to the distinctive sorghum adaptation to tropical soils with multiple abiotic stresses including low P availability and drought.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fósforo , Raíces de Plantas , Sitios de Carácter Cuantitativo , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sorghum/crecimiento & desarrollo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Suelo/química , Fenotipo
3.
Planta ; 259(2): 46, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285079

RESUMEN

MAIN CONCLUSION: Foliar NAA increases photosynthate supplied by enhancing photosynthesis, to strengthen root activity and provide a large sink for root carbohydrate accumulation, which is beneficial to acquire more nitrogen. The improvement of grain yield is an effective component in the food security. Auxin acts as a well-known plant hormone, plays an important role in maize growth and nutrient uptake. In this study, with maize variety Zhengdan 958 (ZD958) as material, the effects of auxin on nitrogen (N) uptake and assimilation of seedling maize were studied by hydroponic experiments. With water as the control, naphthalene acetic acid (NAA, 0.1 mmol/L) and aminoethoxyvinylglycine (AVG, 0.1 mmol/L, an auxin synthesis inhibitor) were used for foliar spraying. The results showed that NAA significantly improved photosynthetic rate and plant biomass by 58.6% and 91.7%, respectively, while the effect of AVG was opposite to that of NAA. At the same time, key enzymes activities related N assimilation in NAA leaves were significantly increased, and the activities of nitrate reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) were increased by 32.3%, 22.9%, and 16.2% in new leaves. Furthermore, NAA treatment promoted underground growth. When compared with control, total root length, root surface area, root tip number, branch number and root activity were significantly increased by 37.8%, 22.2%, 35.1%, 28.8% and 21.2%. Root growth is beneficial to N capture in maize. Ultimately, the total N accumulation of NAA treatment was significantly increased by 74.5%, as compared to the control. In conclusion, NAA foliar spraying increased endogenous IAA content, and enhanced the activity of N assimilation-related enzymes and photosynthesis rate, in order to build a large sink for carbohydrate accumulation. In addition, NAA strengthened root activity and regulated root morphology and architecture, which facilitated further N uptake and plant growth.


Asunto(s)
Ácidos Indolacéticos , Zea mays , Transporte Biológico , Carbohidratos , Nitrógeno
4.
Physiol Plant ; 176(4): e14435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036950

RESUMEN

This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.


Asunto(s)
Hidroponía , Lactuca , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Transducción de Señal , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Lactuca/genética , Lactuca/metabolismo , Lactuca/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Multiómica
5.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000100

RESUMEN

Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.


Asunto(s)
Hierro , Fósforo , Plantas , Suelo , Fósforo/metabolismo , Hierro/metabolismo , Suelo/química , Plantas/metabolismo , Nutrientes/metabolismo , Productos Agrícolas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Microbiología del Suelo
6.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337645

RESUMEN

Root morphology, an important determinant of nutrient absorption and plant growth, can adapt to various growth environments to promote survival. Solution flow under hydroponic conditions provides a mechanical stimulus, triggering adaptive biological responses, including altered root morphology and enhanced root growth and surface area to facilitate nutrient absorption. To clarify these mechanisms, we applied untargeted metabolomics technology, detecting 1737 substances in lettuce root samples under different flow rates, including 17 common differential metabolites. The abscisic acid metabolic pathway product dihydrophaseic acid and the amino and nucleotide sugar metabolism factor N-acetyl-d-mannosamine suggest that nutrient solution flow rate affects root organic acid and sugar metabolism to regulate root growth. Spatial metabolomics analysis of the most stressed root bases revealed significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways: "biosynthesis of cofactors" and "amino sugar and nucleotide sugar metabolism". Colocalization analysis of pathway metabolites revealed a flow-dependent spatial distribution, with higher flavin mononucleotide, adenosine-5'-diphosphate, hydrogenobyrinic acid, and D-glucosamine 6-phosphate under flow conditions, the latter two showing downstream-side enrichment. In contrast, phosphoenolpyruvate, 1-phospho-alpha-D-galacturonic acid, 3-hydroxyanthranilic acid, and N-acetyl-D-galactosamine were more abundant under no-flow conditions, with the latter two concentrated on the upstream side. As metabolite distribution is associated with function, observing their spatial distribution in the basal roots will provide a more comprehensive understanding of how metabolites influence plant morphology and response to environmental changes than what is currently available in the literature.


Asunto(s)
Hidroponía , Lactuca , Metabolómica , Raíces de Plantas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Lactuca/metabolismo , Lactuca/crecimiento & desarrollo , Metabolómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Metaboloma , Nutrientes/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731906

RESUMEN

Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean 'PI366121' and cultivar 'Williams 82'. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans.


Asunto(s)
Mapeo Cromosómico , Glycine max , Raíces de Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética , Glycine max/anatomía & histología , Glycine max/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Mapeo Cromosómico/métodos , Fenotipo , Cromosomas de las Plantas/genética , Ligamiento Genético , Genotipo
8.
J Sci Food Agric ; 104(7): 3865-3882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217341

RESUMEN

BACKGROUND: Soil is a key foundation of crop root growth. There are interactions between root system and soil in multiple ways. The present study aimed to further explore the response of root distribution and morphology to soil physical and chemical environment under maize (Zea mays L.) soybean (Glycine Max L. Merr.) relay strip intercropping (MS) An experiment was carried out aiming to examine the effects of nitrogen (N) applications and interspecific distances on root system and soil environment in MS. The two N application levels, referred to as no N application (NN) and conventional N application (CN), were paired with different interspecific distances: 30, 45 and 60 cm (MS30, MS45 and MS60) and 100 cm of monoculture maize and soybean (MM/SS100). RESULTS: The results demonstrated that MS45 increased the distribution of soil aggregates (> 2 mm) near the crop roots and maize soil nutrients status, which increased by 20.3% and 15.6%. Meanwhile, MS reduced soil bulk density, increased soil porosity and improved soil oxygen content. Optimization of the soil environment facilitated root growth. The MS45 achieved a better result on root distribution and morphology than the other configuration and also increased land productivity. CONCLUSION: Relay intercropped soybean with maize in interspecific row spacing of 45 cm, improved soil physicochemical environment, reshaped root architecture and optimized root spatial distribution of crops to achieve greater land productivity. © 2024 Society of Chemical Industry.


Asunto(s)
Agricultura , Suelo , Suelo/química , Agricultura/métodos , Glycine max , Zea mays , Nitrógeno/análisis
9.
BMC Oral Health ; 24(1): 656, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835024

RESUMEN

INTRODUCTION: The efficacy of root canal treatment is greatly impacted by a thorough understanding of root canal anatomy. This systematic review and meta-analysis aim to thoroughly investigate the root morphology and canal configuration (RMCC) of permanent premolars (PMs). METHODOLOGY: A comprehensive analysis was conducted following the PRISMA guidelines. Literature exploration was carried out across four electronic databases (PubMed, Embase, Cochrane, and Web of Science). The risk of bias assessment was conducted for the included studies utilizing the Anatomical Quality Assessment (AQUA) tool. Data analysis was performed utilizing SPSS and RevMAN5.3.3. The meta-analysis was applied with a 95% confidence interval to calculate odds ratios (OR). RESULTS: Among the 82 selected studies, 59 studies exhibited potential bias in domain one (objective(s) and subject characteristics), followed by domain three (methodology characterization). The majority of maxillary PM1s had either single root (46.7%) or double roots (51.9%), while three-rooted variants were uncommon (1.4%). Conversely, most other PMs exhibited a single root. In terms of canal configuration, maxillary PM1s predominantly featured double distinct canals (87.2%), with the majority of maxillary PM2s displaying either a single canal (51.4%) or double canals (48.3%). Mandibular PMs were primarily characterized by single canals, accounting for 78.3% of mandibular PM1s and 90.3% of mandibular PM2s. Subgroup analyses revealed higher incidences of single-rooted and single-canalled PMs among Asians compared to Caucasians. Additionally, women exhibited a higher incidence of single-rooted PMs, while men showed a greater frequency of double-rooted PMs. CONCLUSIONS: The comprehensive analysis indicated that maxillary PM1s predominantly possess double roots and double canals, whereas maxillary PM2s and mandibular PMs were primarily characterized by single-rooted with a single canal. Notably, single root and single canal were more prevalent among women and Asian samples.


Asunto(s)
Diente Premolar , Tomografía Computarizada de Haz Cónico , Cavidad Pulpar , Raíz del Diente , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Diente Premolar/diagnóstico por imagen , Diente Premolar/anatomía & histología , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/anatomía & histología , Cavidad Pulpar/diagnóstico por imagen , Cavidad Pulpar/anatomía & histología
10.
BMC Plant Biol ; 23(1): 97, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36792994

RESUMEN

Low phosphorus (P) is one of the limiting factors in sustainable cotton production. However, little is known about the performance of contrasting low P tolerant cotton genotypes that might be a possible option to grow in low P condition. In the current study, we characterized the response of two cotton genotypes, Jimian169 a strong low P tolerant, and DES926 a weak low P tolerant genotypes under low and normal P conditions. The results showed that low P greatly inhibited growth, dry matter production, photosynthesis, and enzymatic activities related to antioxidant system and carbohydrate metabolism and the inhibition was more in DES926 as compared to Jimian169. In contrast, low P improved root morphology, carbohydrate accumulation, and P metabolism, especially in Jimian169, whereas the opposite responses were observed for DES926. The strong low P tolerance in Jimian169 is linked with a better root system and enhanced P and carbohydrate metabolism, suggesting that Jimian169 is a model genotype for cotton breeding. Results thus indicate that the Jimian169, compared with DES926, tolerates low P by enhancing carbohydrate metabolism and by inducing the activity of several enzymes related to P metabolism. This apparently causes rapid P turnover and enables the Jimian169 to use P more efficiently. Moreover, the transcript level of the key genes could provide useful information to study the molecular mechanism of low P tolerance in cotton.


Asunto(s)
Fósforo , Fitomejoramiento , Fósforo/metabolismo , Metabolismo de los Hidratos de Carbono , Fotosíntesis , Genotipo
11.
Planta ; 257(5): 98, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37067628

RESUMEN

MAIN CONCLUSION: The combination of water and gas at an aeration rate of 15 mg/L and irrigation amount of 0.8 Ep significantly promoted the root morphology, inter-root soil bacterial community structure and diversity of pepper, enhanced the structure of molecular symbiotic network, and stimulated the potential ecosystem function. Poor aeration adversely affects the root morphology of pepper (Capsicum annuum L.) and bacterial community. It is critical to understand the effects of water-air interactions on root morphology and bacterial community structure and diversity. A randomized block experiment was conducted under the two aeration rates of dissolved oxygen mass concentrations, including A: 15 mg/L, O: 40 mg/L, and C: non-aeration as control treatment, and two irrigation rates of W1 and W2 (0.8 Ep and 1.0 Ep). The results showed that aerated irrigation had a significant effect on the root morphology of pepper. Compared with treatment CW1, treatment AW1 increased root dry weight, root length, root volume, and root surface area by 13.63%, 11.09%, 59.47%, and 61.67%, respectively (P < 0.05). Aerated irrigation significantly increased the relative abundance of Actinobacteria, Gemmatimonadetes, Alphaproteobacteria, Gemmatimonas, Sphingomonas, and KD4-96 aerobic beneficial bacteria. It decreased the relative abundance of Proteobacteria, Monomycetes, Bacteroidetes, Corynebacterium, Gammaproteobacteria, Anaerolineae, Subgroup_6, MND1, Haliangium, and Thiobacillus. The Pielou_e, Shannon and Simpson indexes of treatment AW1 were significantly higher than treatments OW1 and CW1. The results of the ß-diversity of bacterial communities showed that the structure of soil bacterial communities differed significantly among treatments. Actinobacteria was a key phylum affecting root morphology, and AW1 treatment was highly correlated with Actinobacteria. Molecular ecological network analysis showed a relatively high number of bacterial network nodes and more complex relationships among species under the aeration of level 15 mg/L and 0.8 Ep, as well as the emergence of new phylum-level beneficial species: Dependentiae, BRC1, Cyanobacteria, Deinococcus-Thermus, Firmicutes, and Planctomycetes. Therefore, the aeration of 15 mg/L and 0.8 times crop-evaporation coefficient can increase root morphology, inter-root soil bacterial community diversity and bacterial network structure, and enhance potential ecosystem functions in the rhizosphere.


Asunto(s)
Actinobacteria , Capsicum , Suelo/química , Ecosistema , Agua , Bacterias/genética , Microbiología del Suelo
12.
New Phytol ; 237(3): 780-792, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35986650

RESUMEN

Root hairs and soil water content are crucial in controlling the release and diffusion of root exudates and shaping profiles of biochemical properties in the rhizosphere. But whether root hairs can offset the negative impacts of drought on microbial activity remains unknown. Soil zymography, 14 C imaging and neutron radiography were combined to identify how root hairs and soil moisture affect rhizosphere biochemical properties. To achieve this, we cultivated two maize genotypes (wild-type and root-hair-defective rth3 mutant) under ambient and drought conditions. Root hairs and optimal soil moisture increased hotspot area, rhizosphere extent and kinetic parameters (Vmax and Km ) of ß-glucosidase activities. Drought enlarged the rhizosphere extent of root exudates and water content. Colocalization analysis showed that enzymatic hotspots were more colocalized with root exudate hotspots under optimal moisture, whereas they showed higher dependency on water hotspots when soil water and carbon were scarce. We conclude that root hairs are essential in adapting rhizosphere properties under drought to maintain plant nutrition when a continuous mass flow of water transporting nutrients to the root is interrupted. In the rhizosphere, soil water was more important than root exudates for hydrolytic enzyme activities under water and carbon colimitation.


Asunto(s)
Sequías , Rizosfera , Agua/análisis , Raíces de Plantas/genética , Suelo/química , Carbono , Microbiología del Suelo
13.
Glob Chang Biol ; 29(19): 5677-5690, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37522370

RESUMEN

Cover crops increase carbon (C) inputs to agricultural soils, and thus have the potential to mitigate climate change through enhanced soil organic carbon (SOC) storage. However, few studies have explored the fate of belowground C inputs associated with varying root traits into the distinct SOC pools of mineral-associated organic carbon (MAOC) particulate organic carbon (POC). Therefore, a packed 0.5 m column trial was established with 0.25 m topsoil and 0.25 m subsoil with four cover crops species (winter rye, oilseed radish, chicory, and hairy vetch) known to differ in C:N ratio and root morphology. Cover crops were 14 CO2 -labeled for 3 months, and then, half of the columns were sampled to quantify root and rhizodeposition C. In the remaining columns, plant shoots were harvested and the undisturbed soil and roots were left for incubation. Bulk soil from both sampling times was subjected to a simple fractionation scheme, where 14 C in the <50 and >50 µm fraction was assumed to represent MAOC and POC, respectively. The fast-growing rye and radish produced the highest root C. The percentage loss of C via rhizodeposition (%ClvR) showed a distinct pattern, with 22% for the more branched roots (rye and vetch) and 6%-8% for the less branched roots (radish and chicory). This suggests that root morphology plays a key role in determining rhizodeposition C. After 1 year of incubation at room temperature, the remaining MAOC and POC were positively correlated with belowground inputs in absolute terms. However, topsoil MAOC formation efficiencies (cover crop-derived MAOC remaining as a share of belowground inputs) were higher for vetch and rye (21% and 15%, respectively) than for chicory and radish (9% and 10%, respectively), suggesting a greater importance of rhizodeposition (or indirectly, root morphology) than solely substrate C:N ratio for longer term C stabilization.


Asunto(s)
Carbono , Suelo , Nitrógeno/análisis , Agricultura , Productos Agrícolas , Control de Calidad
14.
J Hum Evol ; 180: 103372, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229947

RESUMEN

More than 150 hominin teeth, dated to ∼330-241 thousand years ago, were recovered during the 2013-2015 excavations of the Dinaledi Chamber of the Rising Star cave system, South Africa. These fossils comprise the first large single-site sample of hominin teeth from the Middle Pleistocene of Africa. Though scattered remains attributable to Homo sapiens, or their possible lineal ancestors, are known from older and younger sites across the continent, the distinctive morphological feature set of the Dinaledi teeth supports the recognition of a novel hominin species, Homo naledi. This material provides evidence of African Homo lineage diversity that lasts until at least the Middle Pleistocene. Here, a catalog, anatomical descriptions, and details of preservation and taphonomic alteration are provided for the Dinaledi teeth. Where possible, provisional associations among teeth are also proposed. To facilitate future research, we also provide access to a catalog of surface files of the Rising Star jaws and teeth.


Asunto(s)
Hominidae , Diente , Humanos , Animales , Sudáfrica , Hominidae/anatomía & histología , Fósiles , Cuevas , Evolución Biológica
15.
Ecotoxicol Environ Saf ; 264: 115458, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37690173

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that colonize plant roots, and they are more common in Cd-polluted habitats. However, there is limited understanding of the response of root traits and cadmium (Cd) uptake to AMF in different crop varieties. Two maize varieties, Panyu 3 and Ludan 8, with high and low Cd uptake capacities, respectively, were cultivated as host plants in a pot experiment with Cd-polluted soil (17.1 mg/kg Cd). The effects of AMF on the growth, mineral nutrient concentration, root traits, phytohormone concentrations and Cd uptake of the two maize varieties and their comprehensive response to AMF fungal inoculation were investigated. AMF improved growth, mineral nutrient levels and root morphology and increased lignin and phytohormone concentrations in roots and Cd uptake in the two maize varieties. However, the two maize varieties, Panyu 3 and Ludan 8, had different responses to AMF, and their comprehensive response indices were 753.6% and 389.4%, respectively. The root biomass, branch number, abscisic acid concentrations, lignin concentrations and Cd uptake of maize Panyu 3 increased by 151.1%, 28.6%, 139.7%, 99.5% and 84.7%, respectively. The root biomass, average diameter, auxin concentration, lignin concentration and Cd uptake of maize Ludan 8 increased by 168.7%, 31.8%, 31.4%, 41.7% and 136.7%, respectively. Moreover, Cd uptake in roots presented very significant positive correlations with the average root diameter and abscisic acid concentration. A structural equation model indicated that the root abscisic acid concentration and root surface area had positive effects on Cd uptake by the Panyu 3 maize roots; the root abscisic acid concentration and root tip number had positive effects on Cd uptake by the Ludan 8 maize roots. Thus, AMF differentially regulated Cd uptake in the two maize varieties, and the regulatory effect was closely related to root traits and phytohormone concentrations.


Asunto(s)
Micorrizas , Contaminantes del Suelo , Micorrizas/fisiología , Cadmio/toxicidad , Cadmio/análisis , Zea mays , Raíces de Plantas/química , Reguladores del Crecimiento de las Plantas , Ácido Abscísico/análisis , Lignina/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Minerales/análisis , Suelo/química
16.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445670

RESUMEN

Root architecture is key in determining how effective plants are at intercepting and absorbing nutrients and water. Previously, the wheat (Triticum aestivum) cultivars Spica and Maringa were shown to have contrasting root morphologies. These cultivars were crossed to generate an F6:1 population of recombinant inbred lines (RILs) which was genotyped using a 90 K single nucleotide polymorphisms (SNP) chip. A total of 227 recombinant inbred lines (RILs) were grown in soil for 21 days in replicated trials under controlled conditions. At harvest, the plants were scored for seven root traits and two shoot traits. An average of 7.5 quantitative trait loci (QTL) were associated with each trait and, for each of these, physical locations of the flanking markers were identified using the Chinese Spring reference genome. We also compiled a list of genes from wheat and other monocotyledons that have previously been associated with root growth and morphology to determine their physical locations on the Chinese Spring reference genome. This allowed us to determine whether the QTL discovered in our study encompassed genes previously associated with root morphology in wheat or other monocotyledons. Furthermore, it allowed us to establish if the QTL were co-located with the QTL identified from previously published studies. The parental lines together with the genetic markers generated here will enable specific root traits to be introgressed into elite wheat lines. Moreover, the comprehensive list of genes associated with root development, and their physical locations, will be a useful resource for researchers investigating the genetics of root morphology in cereals.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico , Fenotipo , Marcadores Genéticos , Polimorfismo de Nucleótido Simple
17.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068940

RESUMEN

The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.


Asunto(s)
Plantas , Hidroponía/métodos , Nutrientes , Arginina
18.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674428

RESUMEN

Roots are essential for plant growth, and studies on root-related genes, exemplified by WUSCHEL-RELATED HOMEOBOX5 (WOX5), have mainly concentrated on model organisms with less emphasis on the function of these genes in woody plants. Here, we report that overexpression of the WOX5 gene from Liriodendron hybrid (LhWOX5) in Arabidopsis leads to significant morphological changes in both the aerial and subterranean organs. In the Arabidopsis aerial parts, overexpression of LhWOX5 results in the production of ectopic floral meristems and leaves, possibly via the ectopic activation of CLV3 and LFY. In addition, in the Arabidopsis root, overexpression of LhWOX5 alters root apical meristem morphology, leading to a curled and shortened primary root. Importantly, these abnormal phenotypes in the aerial and subterranean organs caused by constitutive ectopic expression of LhWOX5 mimic the observed phenotypes when overexpressing AtWUS and AtWOX5 in Arabidopsis, respectively. Taken together, we propose that the LhWOX5 gene, originating from the Magnoliaceae plant Liriodendron, is a functional homolog of the AtWUS gene from Arabidopsis, while showing the highest degree of sequence similarity with its ortholog, AtWOX5. Our study provides insight into the potential role of LhWOX5 in the development of both the shoot and root.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/genética , Hojas de la Planta/metabolismo , Plantas/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
19.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047206

RESUMEN

Maximizing soil exploration through modifications of the root system is a strategy for plants to overcome phosphorus (P) deficiency. Genome-wide association with 561 tropical maize inbred lines from Embrapa and DTMA panels was undertaken for root morphology and P acquisition traits under low- and high-P concentrations, with 353,540 SNPs. P supply modified root morphology traits, biomass and P content in the global maize panel, but root length and root surface area changed differentially in Embrapa and DTMA panels. This suggests that different root plasticity mechanisms exist for maize adaptation to low-P conditions. A total of 87 SNPs were associated to phenotypic traits in both P conditions at -log10(p-value) ≥ 5, whereas only seven SNPs reached the Bonferroni significance. Among these SNPs, S9_137746077, which is located upstream of the gene GRMZM2G378852 that encodes a MAPKKK protein kinase, was significantly associated with total seedling dry weight, with the same allele increasing root length and root surface area under P deficiency. The C allele of S8_88600375, mapped within GRMZM2G044531 that encodes an AGC kinase, significantly enhanced root length under low P, positively affecting root surface area and seedling weight. The broad genetic diversity evaluated in this panel suggests that candidate genes and favorable alleles could be exploited to improve P efficiency in maize breeding programs of Africa and Latin America.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/metabolismo , Fósforo/metabolismo , Fitomejoramiento , Fenotipo , Plantones/metabolismo , Polimorfismo de Nucleótido Simple
20.
J Environ Manage ; 344: 118628, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536237

RESUMEN

Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments. Inorganic composites were applied in a dose of 3% and 6%. The study also included an analysis of the root morphometric parameters and aboveground biomass of spring wheat and rapeseed. The lowest productivity was observed when both crops were not enriched with fertilizers or other amendments, 24.92 g per pot and 29.83 g per pot for spring wheat and rapeseed, respectively. The application of mineral fertilizers in combination with zeolite-carbon composite gave the highest aboveground biomass of spring wheat, 110.11 g per pot. Both zeolite-carbon and zeolite-vermiculite composites modified the morphological parameters of roots, with the control treatment showing the lowest root length and dry matter. Although mineral fertilization was found to have a positive impact root development in relation to untreated control, the treatment amended with zeolite-carbon composite and leonardite exhibited the highest root length and biomass of spring wheat. No other soil amendments improved the properties of rapeseed roots.


Asunto(s)
Brassica napus , Zeolitas , Suelo , Triticum , Biomasa , Fertilizantes/análisis , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA