Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.203
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(4): 942-956.e14, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30955889

RESUMEN

Plants are sessile and have to cope with environmentally induced damage through modification of growth and defense pathways. How tissue regeneration is triggered in such responses and whether this involves stem cell activation is an open question. The stress hormone jasmonate (JA) plays well-established roles in wounding and defense responses. JA also affects growth, which is hitherto interpreted as a trade-off between growth and defense. Here, we describe a molecular network triggered by wound-induced JA that promotes stem cell activation and regeneration. JA regulates organizer cell activity in the root stem cell niche through the RBR-SCR network and stress response protein ERF115. Moreover, JA-induced ERF109 transcription stimulates CYCD6;1 expression, functions upstream of ERF115, and promotes regeneration. Soil penetration and response to nematode herbivory induce and require this JA-mediated regeneration response. Therefore, the JA tissue damage response pathway induces stem cell activation and regeneration and activates growth after environmental stress.


Asunto(s)
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raíces de Plantas/metabolismo , Células Madre/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Herbivoria , Ácidos Indolacéticos/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Estrés Fisiológico , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(29): e2304612120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428936

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are highly evolved obligate parasites threatening global food security. These parasites have a remarkable ability to establish elaborate feeding sites in roots, which are their only source of nutrients throughout their life cycle. A wide range of nematode effectors have been implicated in modulation of host pathways for defense suppression and/or feeding site development. Plants produce a diverse array of peptide hormones including PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides, which promote root growth via cell expansion and proliferation. A sulfated PSY-like peptide RaxX (required for activation of XA21 mediated immunity X) produced by the biotrophic bacterial pathogen (Xanthomonas oryzae pv. oryzae) has been previously shown to contribute to bacterial virulence. Here, we report the identification of genes from root-knot nematodes predicted to encode PSY-like peptides (MigPSYs) with high sequence similarity to both bacterial RaxX and plant PSYs. Synthetic sulfated peptides corresponding to predicted MigPSYs stimulate root growth in Arabidopsis. MigPSY transcript levels are highest early in the infection cycle. Downregulation of MigPSY gene expression reduces root galling and egg production, suggesting that the MigPSYs serve as nematode virulence factors. Together, these results indicate that nematodes and bacteria exploit similar sulfated peptides to hijack plant developmental signaling pathways to facilitate parasitism.


Asunto(s)
Arabidopsis , Nematodos , Parásitos , Tylenchoidea , Animales , Plantas , Péptidos , Transducción de Señal , Tirosina , Enfermedades de las Plantas/microbiología , Tylenchoidea/genética , Raíces de Plantas
3.
Mol Plant Microbe Interact ; 37(3): 179-189, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37870371

RESUMEN

Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Asunto(s)
Quistes , Tylenchida , Tylenchoidea , Animales , Femenino , Tylenchoidea/genética , Interacciones Huésped-Parásitos/fisiología , Transducción de Señal , Productos Agrícolas , Enfermedades de las Plantas/parasitología
4.
Biochem Biophys Res Commun ; 720: 150086, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-38761478

RESUMEN

Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Plantones , Nicotiana/parasitología , Nicotiana/genética , Nicotiana/metabolismo , Animales , Plantones/parasitología , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/fisiología , Pared Celular/metabolismo , Pared Celular/parasitología , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética
5.
BMC Plant Biol ; 24(1): 469, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811862

RESUMEN

BACKGROUND: Green nanoparticles are considered to be an effective strategy for improving phytochemicals and raising productivity in soil infected by root-knot nematodes. This work aims to understand the characteristics of certain nanomaterials, including non-iron (nFe), green non-iron (GnFe), and green magnetic nanobiochar (GMnB), and the effect of adding them at 3 and 6 mg kg- 1 on phytochemicals and tomato (Solanum lycopersicum) plant growth in soils infected by root-knot nematodes. RESULTS: Spectroscopic characterization of nanomaterials showed that nFe, GnFe, and GMnB contained functional groups (e.g., Fe-O, S-H, C-H, OH, and C = C) and possessed a large surface area. Application of GMB at 6 mg kg- 1 was the most efficient treatment for increasing the phytochemicals of the tomato plant, with a rise of 123.2% in total phenolic, 194.7% in total flavonoids, 89.7% in total carbohydrate, 185.2% in total free amino acids, and 165.1% in total tannin compared to the untreated soil. Tomato plant growth and attributes increased with increasing levels of soil nano-amendment in this investigation. The addition of GnFe3 and GnFe6 increased the reduction of root galls of root-knot nematodes by 22.44% and 17.76% compared with nFe3 and nFe6, respectively. The inclusion of the examined soil nano-amendments increased phytochemicals and reduced the total number of root-knot nematodes on tomato plants at varying rates, which played a significant role in enhancing tomato growth. CONCLUSIONS: In conclusion, treating tomato plants with GnFe or GMnB can be used as a promising green nanomaterial to eliminate root-knot nematodes and increase tomato yield in sandy clay loam soil.


Asunto(s)
Fitoquímicos , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Solanum lycopersicum/crecimiento & desarrollo , Animales , Fitoquímicos/química , Tylenchoidea/fisiología , Tylenchoidea/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Nanopartículas Magnéticas de Óxido de Hierro/química , Resistencia a la Enfermedad , Raíces de Plantas/parasitología , Suelo/parasitología , Suelo/química
6.
Planta ; 260(2): 36, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922545

RESUMEN

MAIN CONCLUSION: Integrated management strategies, including novel nematicides and resilient cultivars, offer sustainable solutions to combat root-knot nematodes, crucial for safeguarding global agriculture against persistent threats. Root-knot nematodes (RKN) pose a significant threat to a diverse range of host plants, with their obligatory endoparasitic nature leading to substantial agricultural losses. RKN spend much of their lives inside or in contact by secreting plant cell wall-modifying enzymes resulting in the giant cell development for establishing host-parasite relationships. Additionally, inflicting physical harm to host plants, RKN also contributes to disease complexes creation with fungi and bacteria. This review comprehensively explores the origin, history, distribution, and physiological races of RKN, emphasizing their economic impact on plants through gall formation. Management strategies, ranging from cultural and physical to biological and chemical controls, along with resistance mechanisms and marker-assisted selection, are explored. While recognizing the limitations of traditional nematicides, recent breakthroughs in non-fumigant alternatives like fluensulfone, spirotetramat, and fluopyram offer promising avenues for sustainable RKN management. Despite the success of resistance mechanisms like the Mi gene, challenges persist, prompting the need for integrative approaches to tackle Mi-virulent isolates. In conclusion, the review stresses the importance of innovative and resilient control measures for sustainable agriculture, emphasizing ongoing research to address evolving challenges posed by RKN. The integration of botanicals, resistant cultivars, and biological controls, alongside advancements in non-fumigant nematicides, contributes novel insights to the field, laying the ground work for future research directions to ensure the long-term sustainability of agriculture in the face of persistent RKN threats.


Asunto(s)
Agricultura , Enfermedades de las Plantas , Raíces de Plantas , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Agricultura/métodos , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Interacciones Huésped-Parásitos , Resistencia a la Enfermedad , Productos Agrícolas/parasitología , Antinematodos/farmacología
7.
BMC Microbiol ; 24(1): 329, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244577

RESUMEN

BACKGROUND: Abamectin (ABA) is considered a powerful insecticidal and anthelmintic agent. It is an intracellular product of Streptomyces avermitilis; is synthesized through complicated pathways and can then be extracted from mycelial by methanol extraction. ABA serves as a biological control substance against the root-knot nematode Meloidogyne incognita. This investigation is intended to reach a new strain of S. avermitilis capable of producing ABA effectively. RESULTS: Among the sixty actinobacterial isolates, Streptomyces St.53 isolate was chosen for its superior nematicidal effectiveness. The mycelial-methanol extract of isolate St.53 exhibited a maximum in vitro mortality of 100% in one day. In the greenhouse experiment, the mycelial-methanol extract demonstrated, for the second-stage juveniles (J2s), 75.69% nematode reduction and 0.84 reproduction rate (Rr) while for the second-stage juveniles (J2s), the culture suspension demonstrated 75.38% nematode reduction and 0.80 reproduction rate (Rr). Molecular identification for St.53 was performed using 16 S rRNA gene analysis and recorded in NCBI Genbank as S. avermitilis MICNEMA2022 with accession number (OP108264.1). LC-MS was utilized to detect and identify abamectin in extracts while HPLC analysis was carried out for quantitative determination. Both abamectin B1a and abamectin B1b were produced and detected at retention times of 4.572 and 3.890 min respectively. CONCLUSION: Streptomyces avermitilis MICNEMA2022 proved to be an effective source for producing abamectin as a biorational agent for integrated nematode management.


Asunto(s)
Ivermectina , Streptomyces , Tylenchoidea , Streptomyces/genética , Streptomyces/metabolismo , Ivermectina/análogos & derivados , Ivermectina/farmacología , Ivermectina/metabolismo , Animales , Tylenchoidea/efectos de los fármacos , ARN Ribosómico 16S/genética , Antihelmínticos/farmacología , Filogenia , Antinematodos/farmacología , Antinematodos/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico/farmacología
8.
New Phytol ; 242(1): 262-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332248

RESUMEN

Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.


Asunto(s)
Hemípteros , Oryza , Tylenchoidea , Animales , Femenino , Hemípteros/fisiología , Azúcares/metabolismo , Oryza/metabolismo
9.
New Phytol ; 241(2): 878-895, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38044565

RESUMEN

The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tylenchoidea/fisiología
10.
New Phytol ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39468918

RESUMEN

Cover crop integration into grain crop rotations is a promising strategy for mitigating nematode-induced diseases in agriculture. However, the precise mechanisms underlying this phenomenon remain elusive. Here, we first assessed the impact of five commonly used cover crops on the suppression of rice root-knot nematodes (RKNs). We then chose ryegrass as a model to explore the mechanistic basis of the suppression effect. Contrary to expectations, while ryegrass rotation significantly enhances soil fertility, this increased fertility has minimal impact on RKN suppression. Furthermore, neither integrated ryegrass residues nor root exudates exhibit direct toxicity towards RKNs. We demonstrated that ryegrass rotation primarily suppresses RKNs by enriching beneficial soil microbiota. By complementing with isolated bacteria strains, we further demonstrated that ryegrass-enriched bacteria not only directly reduce RKN infectivity and preference, but also activate plant immunity via the OsLRR-RLK-MAPK-WRKY-JA cascade, thereby diminishing RKN infection. Our study highlights the crucial role of soil microbiota in plant-nematode interactions, challenging conventional views on the direct effects of cover crops in nematode suppression. It offers a mechanistic understanding of the regulation potential and action modes of cover crops in mitigating nematode diseases, providing valuable insights for sustainable agriculture.

11.
Plant Cell Environ ; 47(8): 2811-2820, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679939

RESUMEN

Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.


Asunto(s)
Interacciones Huésped-Parásitos , Oxidación-Reducción , Enfermedades de las Plantas , Plantas , Especies Reactivas de Oxígeno , Transducción de Señal , Animales , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas/parasitología , Plantas/metabolismo , Plantas/parasitología , Nematodos/fisiología
12.
Theor Appl Genet ; 137(10): 234, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325170

RESUMEN

Sweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is among the world's most important food crops and is North Carolina's most important vegetable crop. The recent introduction of Meloidogyne enterolobii poses a significant economic threat to North Carolina's sweetpotato industry and breeding resistance into new varieties has become a high priority for the US sweetpotato industry. Previous studies have shown that 'Tanzania', a released African landrace, is resistant to M. enterolobii. We screened the biparental sweetpotato mapping population, 'Tanzania' x 'Beauregard', for resistance to M. enterolobii by inoculating 246 full-sibs with 10,000 eggs each under greenhouse conditions. 'Tanzania', the female parent, was highly resistant, while 'Beauregard' was highly susceptible. Our bioassays exhibited strong skewing toward resistance for three measures of resistance: reproductive factor, eggs per gram of root tissue, and root gall severity ratings. A 1:1 segregation for resistance suggested a major gene conferred M. enterolobii resistance. Using a random-effect multiple interval mapping model, we identified a single major QTL, herein designated as qIbMe-4.1, on linkage group 4 that explained 70% of variation in resistance to M. enterolobii. This study provides a new understanding of the genetic basis of M. enterolobii resistance in sweetpotato and represents a major step towards the identification of selectable markers for nematode resistance breeding.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Ipomoea batatas , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Tylenchoidea , Ipomoea batatas/genética , Ipomoea batatas/parasitología , Animales , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Fenotipo , Marcadores Genéticos
13.
Arch Microbiol ; 206(4): 160, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483595

RESUMEN

Root-knot nematodes (RKN) are one of the most harmful soil-borne plant pathogens in the world. Actinobacteria are known phytopathogen control agents. The aim of this study was to select soil actinobacteria with control potential against the RKN (Meloidogyne javanica) in tomato plants and to determine mechanisms of action. Ten isolates were tested and a significant reduction was observed in the number of M. javanica eggs, and galls 46 days after infestation with the nematode. The results could be explained by the combination of different mechanisms including parasitism and induction of plant defense response. The M. javanica eggs were parasited by all isolates tested. Some isolates reduced the penetration of juveniles into the roots. Other isolates using the split-root method were able to induce systemic defenses in tomato plants. The 4L isolate was selected for analysis of the expression of the plant defense genes TomLoxA, ACCO, PR1, and RBOH1. In plants treated with 4L isolate and M. javanica, there was a significant increase in the number of TomLoxA and ACCO gene transcripts. In plants treated only with M. javanica, only the expression of the RBOH1 and PR1 genes was induced in the first hours after infection. The isolates were identified using 16S rRNA gene sequencing as Streptomyces sp. (1A, 3F, 4L, 6O, 8S, 9T, and 10U), Kribbella sp. (5N), Kitasatospora sp. (2AE), and Lentzea sp. (7P). The efficacy of isolates from the Kitasatospora, Kribbella, and Lentzea genera was reported for the first time, and the efficacy of Streptomyces genus isolates for controlling M. javanica was confirmed. All the isolates tested in this study were efficient against RKN. This study provides the opportunity to investigate bacterial genera that have not yet been explored in the control of M. javanica in tomatoes and other crops.


Asunto(s)
Actinobacteria , Actinomycetales , Solanum lycopersicum , Tylenchoidea , Animales , Enfermedades de las Plantas/prevención & control , Tylenchoidea/genética , Actinobacteria/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Actinomycetales/genética , Suelo
14.
Int Microbiol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122800

RESUMEN

Dry bean (Phaseolus vulgaris L.) is an important commercialized field crop in South Africa for aiding in food security as a cheap protein source. However, it is highly susceptible to root-knot nematodes (RKN), Meloidogyne species. Use of indigenous nematophagous fungi as bio-control agents (BCA) of Meloidogyne nematodes is a promising research focus area. This is because indigenous fungal species are naturally part of the ecosystem and therefore compatible with other biological processes unlike most synthetic chemicals. The objective of the study was to identify indigenous nematophagous fungal BCA and establish their potential efficacy in reducing M. enterolobii population densities on dry bean with and without incorporation of compost. Screened indigenous fungal species included Aspergillus terreus, Talaromyces minioluteus, T. sayulitensis, Trichoderma ghanense, and T. viride. There were observed significant parasitism differences (P ≤ 0.05) among the BCA, with T. ghanense showing the highest egg parasitism (86%), followed by T. minioluteus (72%) and T. sayulitensis (70%). On the other hand, the highest J2 parasitism was observed on T. minioluteus (95%), followed by A. terreus and T. viride (63%). A similar trend was observed under in vivo conditions, with higher efficacy with compost incorporation. This provides a highly encouraging alternative and ecologically complementary Meloidogyne management in dry bean production.

15.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39169468

RESUMEN

AIMS: The objective of this study was to elucidate the role and mechanism of changes in the rhizosphere microbiome following Arthrobotrys oligospora treatment in the biological control of root-knot nematodes and identify the key fungal and bacterial species that collaborate with A. oligospora to biocontrol root-knot nematodes. METHODS AND RESULTS: We conducted a pot experiment to investigate the impact of A. oligospora treatment on the biocontrol efficiency of A. oligospora against Meloidogyne incognita infecting tomatoes. We analyzed the rhizosphere bacteria and fungi communities of tomato by high-throughput sequencing of the 16S rRNA gene fragment and the internal transcribed spacer (ITS). The results indicated that the application of A. oligospora resulted in a 53.6% reduction in the disease index of M. incognita infecting tomato plants. The bacterial diversity of rhizosphere soil declined in the A. oligospora-treated group, while fungal diversity increased. The A. oligospora treatment enriched the tomato rhizosphere with Acidobacteriota, Firmicutes, Bradyrhizobium, Sphingomonadales, Glomeromycota, and Purpureocillium. These organisms are involved in the utilization of rhizosphere organic matter, nitrogen, and glycerolipids, or play the role of ectomycorrhiza or directly kill nematodes. The networks of bacterial and fungal co-occurrence exhibited a greater degree of stability and complexity in the A. oligospora treatment group. CONCLUSIONS: This study demonstrated the key fungal and bacterial species that collaborate with the A. oligospora in controlling the root-knot nematode and elaborated the potential mechanisms involved. The findings offer valuable insights and inspiration for the advancement of bionematicide based on nematode-trapping fungi.


Asunto(s)
Enfermedades de las Plantas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Animales , Tylenchoidea/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Control Biológico de Vectores , Microbiota , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Ascomicetos/fisiología , Ascomicetos/genética , Hongos/fisiología , Hongos/genética
16.
Environ Res ; 244: 117930, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103771

RESUMEN

Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.


Asunto(s)
Hypocreales , Metales Pesados , Tylenchoidea , Humanos , Animales , Cadmio/análisis , Tylenchoidea/metabolismo , Tylenchoidea/microbiología , Metales Pesados/análisis , Hypocreales/metabolismo , Suelo
17.
Phytopathology ; 114(6): 1244-1252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38916562

RESUMEN

Three novel trifluoromethylated compounds were designed and synthesized by reacting trifluoroacetimidoyl chloride derivatives with acetamidine hydrochloride or thiourea in the presence of potassium carbonate or sodium hydrogen carbonate as a base. In vitro and in vivo assays demonstrated the efficacy of the tested compounds in controlling root-knot nematode disease on pistachio rootstocks caused by Meloidogyne incognita. Bis-trifluoromethylated derivatives, namely N,N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (compound A1), showed high efficacy as novel and promising nematicides, achieving up to 78.28% control at a concentration of 0.042 mg/liter. This effect is attributed to four methyl and two trifluoromethyl groups. In the pre-inoculation application of compound A1, all three concentrations (0.033, 0.037, and 0.042 mg/liter, and Velum) exhibited a higher level of control, with 83.79, 87.46, and 80.73% control, respectively. In the microplot trials, compound A1 effectively reduced population levels of M. incognita and enhanced plant growth at a concentration of 0.037 mg/liter. This suggests that compound A1 has the potential to inhibit hedgehog protein and could be utilized to prevent the progression of root-knot disease. Furthermore, the molecular docking results revealed that compounds A1 and A3 interact with specific amino acid residues (Gln60, Asp530, Glu70, Arg520, and Thr510) located in the active site of hedgehog protein. Based on the experimental findings of this study, compound A1 shows promise as a lead compound for future investigations.


Asunto(s)
Antinematodos , Simulación del Acoplamiento Molecular , Pistacia , Enfermedades de las Plantas , Raíces de Plantas , Tylenchoidea , Animales , Tylenchoidea/efectos de los fármacos , Antinematodos/farmacología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/parasitología , Pistacia/química
18.
J Invertebr Pathol ; 207: 108213, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343129

RESUMEN

Entomopathogenic Xenorhabdus spp. bacteria, symbiont of the nematode Steinernema spp., shows potential for mitigating agricultural pests and diseases through bioactive compound production. The plant-parasitic nematode (PPN) Meloidogyne incognita affects the yield and quality of numerous crops, causing significant economic losses. We speculate that Cell-Free Supernatants (CFS) from Xenorhabdus spp. could reduce the impact of the root-knot nematode (RKN) M. incognita without negatively affecting entomopathogenic nematodes (EPNs), which are considered beneficial organisms. This study explored the activity of seven CFS against M. incognita (two populations, AL05 and Chipiona) and their possible effects on EPNs. The in vitro impact of CFS at 10 %, 40 %, and 90 % concentrations on nematode motility at four and 24 h were tested on the PPN M. incognita and two EPNs, S. feltiae and H. bacteriophora. Additionally, EPN viability and virulence were evaluated at two and five days. On the other hand, tomato plant-mesocosm experiments examined the activity of four CFS on M. incognita reproductive capacity and EPN virulence. In vitro exposure of M. incognita to 90 % concentration of CFS resulted in reductions of activity over 60 % after four hours of expossure in four out of seven CFS. In the in vitro evaluation of two species of EPNs, none of the CFS affected the activity across any tested doses after four hours of exposure nor after 24 h. Plant-mesocosm experiments showed that CFS application significantly reduced RKN galls, egg masses, and galling index. However, the virulence of both EPN species decreased 15 days after application, with a significant impact on S. feltiae. Overall, these findings suggest that CFS could be used as a bio-tool against M. incognita in tomato crops, mitigating its impact on plant growth. However, this study also highlights the necessity of investigating the effects of CFS on non-target organisms.

19.
Mycorrhiza ; 34(1-2): 145-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38441668

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.


Asunto(s)
Glomeromycota , Micorrizas , Solanum lycopersicum , Tylenchoidea , Animales , Micorrizas/fisiología , Raíces de Plantas/microbiología , Glomeromycota/fisiología , Plantas
20.
Plant Dis ; 108(1): 94-103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37467122

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are one of the most economically important plant parasitic nematodes, infecting almost all cultivated plants and resulting in severe yield losses every year. Plant growth-promoting rhizobacteria (PGPR) have been extensively used to prevent and control root-knot diseases and increase yield. In this study, the effect of a consortium of three PGPR strains (Bacillus cereus AR156, B. subtilis SM21, and Serratia sp. XY21; hereafter "BBS") on root-knot disease of cucumber was evaluated. The application of BBS significantly reduced the severity of root-knot disease by 56 to 72%, increased yield by 36 to 55%, and improved fruit quality by 14 to 90% and soil properties by 1 to 90% relative to the control in the cucumber fields of the Nanjing suburb, Jiangsu Province, from 2015 to 2018. BBS altered the rhizosphere bacterial community. Compared with the control group, it significantly (false discovery rate, P < 0.05) increased the abundance of 14 bacterial genera that were negatively correlated with disease severity. Additionally, the redundancy analysis suggested that BBS-treated rhizosphere soil samples were dominated by disease-suppressive bacteria, including the genera Iamia, Kutzneria, Salinibacterium, Mycobacterium, Kribbella, Pseudonocardia, Sporichthya, Sphaerisporangium, Actinomadura, Flavisolibacter, Phenylobacterium, Bosea, Hyphomicrobium, Agrobacterium, Sphingomonas, and Nannocystis, which were positively related to total organic carbon, total nitrogen, total organic matter, dissolved organic carbon, [Formula: see text]-N, and available phosphorus contents. This suggests that BBS suppresses root-knot nematodes and improves the soil chemical properties of cucumber by altering the rhizosphere microbial community.


Asunto(s)
Actinomycetales , Cucumis sativus , Microbiota , Rizosfera , Suelo/química , Bacillus cereus , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA