Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
2.
Circ Res ; 128(2): 203-215, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33228470

RESUMEN

RATIONALE: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes. Although continuous with the extracellular space, the narrow lumen and the tortuous structure of TT can form domains of restricted diffusion. As a result of unequal ion fluxes across cell surface and TT membranes, limited diffusion may generate ion gradients within TT, especially deep within the TT network and at high pacing rates. OBJECTIVE: We postulate that there may be an advective component to TT content exchange, wherein cyclic deformation of TT during diastolic stretch and systolic shortening serves to mix TT luminal content and assists equilibration with bulk extracellular fluid. METHODS AND RESULTS: Using electron tomography, we explore the 3-dimensional nanostructure of TT in rabbit ventricular myocytes, preserved at different stages of the dynamic cycle of cell contraction and relaxation. We show that cellular deformation affects TT shape in a sarcomere length-dependent manner and on a beat-by-beat time-scale. Using fluorescence recovery after photobleaching microscopy, we show that apparent speed of diffusion is affected by the mechanical state of cardiomyocytes, and that cyclic contractile activity of cardiomyocytes accelerates TT diffusion dynamics. CONCLUSIONS: Our data confirm the existence of an advective component to TT content exchange. This points toward a novel mechanism of cardiac autoregulation, whereby the previously implied increased propensity for TT luminal concentration imbalances at high electrical stimulation rates would be countered by elevated advection-assisted diffusion at high mechanical beating rates. The relevance of this mechanism in health and during pathological remodeling (eg, cardiac hypertrophy or failure) forms an exciting target for further research.


Asunto(s)
Acoplamiento Excitación-Contracción , Frecuencia Cardíaca , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Potenciales de Acción , Animales , Difusión , Tomografía con Microscopio Electrónico , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo , Miocitos Cardíacos/ultraestructura , Conejos , Sarcolema/ultraestructura
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768550

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Animales , Distrofia Muscular de Duchenne/metabolismo , Distrofina/metabolismo , Sarcolema/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Canales Iónicos/metabolismo , Orgánulos/metabolismo , Homeostasis
4.
J Physiol ; 600(8): 1953-1968, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35156706

RESUMEN

Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.


Asunto(s)
Dominios C2 , Proteínas de la Membrana , Disferlina/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo
5.
Cell Physiol Biochem ; 56(4): 382-400, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36001773

RESUMEN

BACKGROUND/AIMS: Alpha synuclein (αSN) is a widely distributed protein in vertebrates whose physiological significance in many tissues remains unclear, being a key protein present in neurodegenerative disease such as Parkinson's Disease, Lewy Body Dementia, and in Sporadic-Inclusion Body Myositis. We search for αSN in skeletal muscle (SM) and neuronal plasma membrane isolated from brain (BR) from young and old rats. METHODS: In isolated Sarcolemma from SM and from myelin-free neuronal plasma membrane isolated from BR, we determine by Western blot with anti-αSN (2B2D1) and anti-P-αSN (EP1536Y) the αSN membrane distribution, and the SM αSN intra and extracellular localization. RESULTS: In SM and BR, αSN is present in cytosol (CYT) as monomer and oligomer structures mainly tetramers (TM) and in plasma membranes as oligomers (TM and PM). All αSN oligomers were localized in non-lipid rafts and their distribution was unaffected by cholesterol-depletion with Methyl-ß-Cyclodextrin. Membranes with natively high cholesterol content such as Transverse Tubules in SM and myelin in BR, reduce the presence of αSN. Under the same experimental conditions, aged SM and BR plasma membranes show ≈2 folds more αSN. In SM, αSN is extruded without cell damage in young and old rats. CONCLUSION: We conclude that oligomeric αSN are regularly present in SM and BR plasma membranes of healthy young and old rats. Interestingly, low-cholesterol content membranes promote αSN interaction. SM, the largest tissue in vertebrate body is a source of αSN and may contribute to the presence of αSN in extracellular fluids.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Colesterol , Músculo Esquelético/metabolismo , Enfermedad de Parkinson/metabolismo , Ratas , alfa-Sinucleína/metabolismo
6.
Circ Res ; 124(9): 1350-1359, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30836825

RESUMEN

RATIONALE: ßARs (ß-adrenergic receptors) are prototypical GPCRs (G protein-coupled receptors) that play a pivotal role in sympathetic regulation. In heart cells, ß1AR signaling mediates a global response, including both l-type Ca2+ channels in the sarcolemma/T tubules and RyRs (ryanodine receptors) in the SR (sarcoplasmic reticulum). In contrast, ß2AR mediates local signaling with little effect on the function of SR proteins. OBJECTIVE: To investigate the signaling relationship between ß1ARs and ß2ARs. METHOD AND RESULTS: Using whole-cell patch-clamp analyses combined with confocal Ca2+ imaging, we found that the activation of compartmentalized ß2AR signaling was able to convert the ß1AR signaling from global to local mode, preventing ß1ARs from phosphorylating RyRs that were only nanometers away from sarcolemma/T tubules. This offside compartmentalization was eliminated by selective inhibition of ß2AR, GRK2 (GPCR kinase-2), ßarr1 (ß-arrestin-1), and phosphodiesterase-4. A knockin rat model harboring mutations of the last 3 serine residues of the ß1AR C terminus, a component of the putative ßarr1 binding site and GRK2 phosphorylation site, eliminated the offside compartmentalization conferred by ß2AR activation. CONCLUSIONS: ß2AR stimulation compartmentalizes ß1AR signaling into nanoscale local domains in a phosphodiesterase-4-dependent manner by targeting the C terminus of ß1ARs. This finding reveals a fundamental negative feed-forward mechanism that serves to avoid the cytotoxicity of circulating catecholamine and to sharpen the transient ß1AR response of sympathetic excitation.


Asunto(s)
Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adrenérgicos/farmacología , Animales , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Masculino , Mutación , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Transgénicas , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Adv Physiol Educ ; 45(3): 461-463, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34152203

RESUMEN

Understanding the gross organization of skeletal muscle is critical to understanding the mechanism of action of muscle physiology. Due to coronavirus disease-19 (COVID-19), many colleges have had to discontinue or curtail teaching and laboratory activities. Whether students are in the classroom or learning online, it is important for them to understand the basics of skeletal muscle organization that allows for movement. Manipulatives have been shown to enhance student learning and understanding in many fields, including physiology. This gives instructors an easy-to-follow tool for making a manipulative that allows students to see the organization of the skeletal muscle. Students can make this manipulative themselves from supplies commonly found in the home or office.


Asunto(s)
Anatomía/educación , Educación a Distancia , Aprendizaje , Músculo Esquelético/anatomía & histología , COVID-19 , Humanos , Estudiantes
9.
BMC Musculoskelet Disord ; 21(1): 784, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246442

RESUMEN

BACKGROUND: Dysferlinopathies are a group of muscle disorders causing muscle weakness and absence or low levels of dysferlin, a type-II transmembrane protein and the causative gene of these dystrophies. Dysferlin is implicated in vesicle fusion, trafficking, and membrane repair. Muscle biopsy of patients with dysferlinopathy is characterized by the presence of inflammatory infiltrates. Studies in the muscle of both human and mouse models of dysferlinopathy suggest dysferlin deficient muscle plays a role in this inflammation by releasing thrombospondin-1. It has also been reported that vitamin D3 treatment enhances dysferlin expression. The ubiquitin-proteasome system recognizes and removes proteins that fail to fold or assemble properly and previous studies suggest that its inhibition could have a therapeutic effect in muscle dystrophies. Here we assessed whether inhibition of the ubiquitin proteasome system prevented degradation of dysferlin in immortalized myoblasts from a patients with two missense mutations in exon 44. METHODS: To assess proteasome inhibition we treated dysferlin deficient myotubes with EB1089, a vitamin D3 analog, oprozomib and ixazomib. Western blot was performed to analyze the effect of these treatments on the recovery of dysferlin and myogenin expression. TSP-1 was quantified using the enzyme-linked immunosorbent assay to analyze the effect of these drugs on its release. A membrane repair assay was designed to assess the ability of treated myotubes to recover after membrane injury and fusion index was also measured with the different treatments. Data were analyzed using a one-way ANOVA test followed by Tukey post hoc test and analysis of variance. A p ≤ 0.05 was considered statistically significant. RESULTS: Treatment with proteasome inhibitors and EB1089 resulted in a trend towards an increase in dysferlin and myogenin expression. Furthermore, EB1089 and proteasome inhibitors reduced the release of TSP-1 in myotubes. However, no effect was observed on the repair of muscle membrane after injury. CONCLUSIONS: Our findings indicate that the ubiquitin-proteasome system might not be the main mechanism of mutant dysferlin degradation. However, its inhibition could help to improve muscle inflammation by reducing TSP-1 release.


Asunto(s)
Inhibidores de Proteasoma , Trombospondina 1 , Disferlina/genética , Humanos , Fibras Musculares Esqueléticas , Proteínas Musculares/genética , Músculo Esquelético , Inhibidores de Proteasoma/farmacología
10.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825681

RESUMEN

Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.


Asunto(s)
Aporfinas/farmacología , Conexinas/metabolismo , Disferlina/genética , Músculo Esquelético/patología , Mioblastos/patología , Animales , Diferenciación Celular/efectos de los fármacos , Disferlina/deficiencia , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inmunología , Distrofia Muscular de Cinturas/patología , Mioblastos/efectos de los fármacos , Fármacos Neuromusculares Despolarizantes/farmacología , Prueba de Desempeño de Rotación con Aceleración Constante , Sarcolema/efectos de los fármacos
11.
J Muscle Res Cell Motil ; 40(3-4): 319-333, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31520263

RESUMEN

The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.


Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Miocitos Cardíacos/metabolismo , Sarcolema/fisiología , Humanos
12.
Bioelectromagnetics ; 40(7): 488-497, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31392747

RESUMEN

Changes in impedance at 2 kHz, adenosine triphosphate (ATP) content, and muscle contraction were evaluated in yellowtail during 0 (ice), 5, 10, 15, and 20°C storage. Histological changes during ice storage were also measured. At any temperature, although impedance increased with both rigor mortis and ATP consumption during early storage, it began to decrease rapidly when ATP was almost depleted. Moreover, temporarily increasing impedance had a strong relationship with ATP content; decreasing impedance had a significant correlation with storage temperature after ATP depletion. Furthermore, impedance increased with narrowing of intercellular spaces when sarcolemma was intact and decreased with expansion of intercellular spaces when sarcolemma was leaky. Meanwhile, changes of sarcolemma and intercellular spaces were accompanied by ATP change. Thus, ATP is one significant physiological factor for impedance change, and temperature greatly influenced impedance after depletion of ATP. Results suggest that impedance analysis can be used as a convenient and nondestructive method to diagnose condition of tissue at different storage temperatures. Bioelectromagnetics. 2019;40:488-497. © 2019 Bioelectromagnetics Society.


Asunto(s)
Adenosina Trifosfato/metabolismo , Impedancia Eléctrica , Peces , Almacenamiento de Alimentos , Músculos/metabolismo , Animales , Tecnología de Alimentos/métodos , Temperatura
13.
Magn Reson Med ; 80(5): 2094-2108, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29577406

RESUMEN

PURPOSE: To measure the microstructural changes during skeletal muscle growth and progressive pathologies using the random permeable model with diffusion MRI, and compare findings to conventional imaging modalities such as three-point Dixon and T2 imaging. METHODS: In vivo and ex vivo DTI experiments with multiple diffusion times (20-700 ms) were completed on wild-type (n = 22) and muscle-dystrophic mdx mice (n = 8) at various developmental time points. The DTI data were analyzed with the random permeable model framework that provides estimates of the unrestricted diffusion coefficient (D0 ), membrane surface-to-volume ratio (S/V), and membrane permeability (κ). In addition, the MRI experiments included conventional measures, such as tissue fat fractions and T2 relaxation. RESULTS: During normal muscle growth between week 4 and week 13, the in vivo S/V, fractional anisotropy, and fat fraction correlated positively with age (ρ = 0.638, 0.664, and 0.686, respectively), whereas T2 correlated negatively (ρ = -0.847). In mdx mice, all DTI random permeable model parameters and fat fraction had significant positive correlation with age, whereas fractional anisotropy and T2 did not have significant correlation with age. Histological measurements of the perimeter-to-area ratio served as a proxy for the model-derived S/V in the cylindrical myofiber geometry, and had a significant correlation with the ex vivo S/V (r = 0.71) as well as the in vivo S/V (r = 0.56). CONCLUSION: The present study demonstrates that DTI at multiple diffusion times with the random permeable model analysis allows for noninvasively quantifying muscle fiber microstructural changes during both normal muscle growth and disease progression. Future studies can apply our technique to evaluate current and potential treatments to muscle myopathies.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular de Duchenne/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Miembro Posterior/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/química , Miofibrillas/química
14.
Muscle Nerve ; 58(2): 286-292, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29603301

RESUMEN

INTRODUCTION: GNE myopathy is an adult-onset muscle disorder characterized by impaired sialylation of (muscle) glycans, detectable by lectin histochemistry. We describe a standardized method to quantify (lectin-) fluorescence in muscle sections, applicable for diagnosis and response to therapy for GNE myopathy. METHODS: Muscle sections were fluorescently labeled with the sialic acid-binding Sambucus nigra agglutinin (SNA) lectin and antibodies to sarcolemma residence protein caveolin-3 (CAV-3). Entire tissue sections were imaged in tiles and fluorescence was quantified. RESULTS: SNA fluorescence co-localizing with CAV-3 was ∼50% decreased in GNE myopathy biopsies compared with muscle-matched controls, confirming previous qualitative results. DISCUSSION: This quantitative fluorescence method can accurately determine sialylation status of GNE myopathy muscle biopsies. This method is adaptable for expression of other membrane-associated muscle proteins, and may be of benefit for disorders in which therapeutic changes in expression are subtle and difficult to assess by other methods. Muscle Nerve 58: 286-292, 2018.


Asunto(s)
Miopatías Distales/patología , Lectinas , Músculo Esquelético/patología , Adulto , Caveolina 3/genética , Miopatías Distales/genética , Femenino , Colorantes Fluorescentes , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía Confocal , Persona de Mediana Edad , Lectinas de Plantas , Proteínas Inactivadoras de Ribosomas , Sarcolema/patología , Sarcolema/ultraestructura
15.
Mol Ther ; 25(10): 2360-2371, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28750735

RESUMEN

Limb girdle muscular dystrophy type 2B (LGMD2B) and other dysferlinopathies are degenerative muscle diseases that result from mutations in the dysferlin gene and have limited treatment options. The dysferlin protein has been linked to multiple cellular functions including a Ca2+-dependent membrane repair process that reseals disruptions in the sarcolemmal membrane. Recombinant human MG53 protein (rhMG53) can increase the membrane repair process in multiple cell types both in vitro and in vivo. Here, we tested whether rhMG53 protein can improve membrane repair in a dysferlin-deficient mouse model of LGMD2B (B6.129-Dysftm1Kcam/J). We found that rhMG53 can increase the integrity of the sarcolemmal membrane of isolated muscle fibers and whole muscles in a Ca2+-independent fashion when assayed by a multi-photon laser wounding assay. Intraperitoneal injection of rhMG53 into mice before acute eccentric treadmill exercise can decrease the release of intracellular enzymes from skeletal muscle and decrease the entry of immunoglobulin G and Evans blue dye into muscle fibers in vivo. These results indicate that short-term rhMG53 treatment can ameliorate one of the underlying defects in dysferlin-deficient muscle by increasing sarcolemmal membrane integrity. We also provide evidence that rhMG53 protein increases membrane integrity independently of the canonical dysferlin-mediated, Ca2+-dependent pathway known to be important for sarcolemmal membrane repair.


Asunto(s)
Proteínas Portadoras/uso terapéutico , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/metabolismo , Proteínas Recombinantes/uso terapéutico , Animales , Modelos Animales de Enfermedad , Disferlina/deficiencia , Disferlina/genética , Endocitosis/efectos de los fármacos , Exocitosis/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Proteínas de Motivos Tripartitos
16.
Am J Physiol Cell Physiol ; 312(2): C155-C168, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881412

RESUMEN

Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD.


Asunto(s)
Membrana Celular/efectos de los fármacos , Antagonistas de Receptores de Mineralocorticoides/administración & dosificación , Proteínas Musculares/metabolismo , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Animales , Membrana Celular/patología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Lisinopril/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Distrofias Musculares/patología , Espironolactona/administración & dosificación , Resultado del Tratamiento
17.
Physiol Genomics ; 49(6): 306-317, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28455309

RESUMEN

The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory ß- and γ-subunits. The association of the α-subunit with ß- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Esquelético/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Células MCF-7 , Ratones , Modelos Biológicos , Estructura Molecular
18.
Circ Res ; 116(8): 1462-1476, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25858069

RESUMEN

Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Hemodinámica , Mecanotransducción Celular , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Adaptación Fisiológica , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Complejos Multiproteicos , Proteínas Musculares/genética , Miocitos Cardíacos/patología
19.
J Struct Biol ; 194(3): 375-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27016283

RESUMEN

The 30kDa N-BAR domain of the human Bin1 protein is essential for the generation of skeletal muscle T-tubules. By electron cryo-microscopy and electron cryo-tomography with a direct electron detector, we found that Bin1-N-BAR domains assemble into scaffolds of low long-range order that form flexible membrane tubules. The diameter of the tubules closely matches the curved shape of the N-BAR domain, which depends on the composition of the target membrane. These insights are fundamental to our understanding of T-tubule formation and function in human skeletal muscle.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Nucleares/química , Dominios Proteicos/fisiología , Multimerización de Proteína , Sarcolema/ultraestructura , Proteínas Supresoras de Tumor/química , Microscopía por Crioelectrón , Humanos , Proteínas de la Membrana/metabolismo , Membranas/ultraestructura , Músculo Esquelético/química , Músculo Esquelético/ultraestructura , Tomografía
20.
Can J Physiol Pharmacol ; 94(3): 324-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26909616

RESUMEN

ATP-sensitive potassium channels are supposed to have a substantial role in improvement of cardiac performance. This study was performed to evaluate whether nandrolone decanoate (ND) and (or) exercise training could affect the expression of cardiac K(ATP) channel subunits. Thirty-five male albino Wistar rats were randomly divided into 5 groups, including sedentary control (SC), sedentary vehicle (SV), sedentary ND (SND), exercise control (EC), and exercise and ND (E+ND). Exercise training was performed on a treadmill 5 times per week. ND was injected (10 mg/kg/week, i.m.) to the rats in the SND and E+ND groups. Following cardiac isolation, the expression of both sarcolemmal and mitochondrial subunits of K(ATP) channel was measured using Western blot method. The expression of sarcolemmal, but not mitochondrial, subunits of K(ATP) channel (Kir6.2 and SUR2) of EC group was significantly higher compared with SC group while ND administration (SND group) did not show any change in their expression. In the E+ND group, ND administration led to decrease of the over-expression of sarcolemmal Kir6.2 and SUR2 which was previously induced by exercise. There was no significant association between the mitochondrial expression of either Kir6.2 or SUR2 proteins and administration of ND or exercise. Supra-physiological dosage of ND negatively reverses the effects of exercise on the cardiac muscle expression of sarcolemmal, but not mitochondrial, K(ATP) channel subunits.


Asunto(s)
Canales KATP/metabolismo , Mitocondrias/efectos de los fármacos , Miocardio/metabolismo , Nandrolona/análogos & derivados , Condicionamiento Físico Animal/fisiología , Canales de Potasio/metabolismo , Sarcolema/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Corazón/efectos de los fármacos , Masculino , Mitocondrias/metabolismo , Nandrolona/farmacología , Nandrolona Decanoato , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Wistar , Sarcolema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA