Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2306507120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37983483

RESUMEN

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality-reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period-we estimate a potential of 41 to 50 Mt net additional annual CO2 uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.


Asunto(s)
Ecosistema , Aerosoles y Gotitas Respiratorias , Humanos , Aerosoles/análisis , Clorofila/análisis , Polvo/análisis , Fluorescencia , Fotosíntesis
2.
New Phytol ; 243(2): 607-619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764134

RESUMEN

Leaf phenology variations within plant communities shape community assemblages and influence ecosystem properties and services. However, questions remain regarding quantification, drivers, and productivity impacts of intra-site leaf phenological diversity. With a 50-ha subtropical forest plot in China's Heishiding Provincial Nature Reserve (part of the global ForestGEO network) as a testbed, we gathered a unique dataset combining ground-derived abiotic (topography, soil) and biotic (taxonomic diversity, functional diversity, functional traits) factors. We investigated drivers underlying leaf phenological diversity extracted from high-resolution PlanetScope data, and its influence on aboveground biomass (AGB) using structural equation modeling (SEM). Our results reveal considerable fine-scale leaf phenological diversity across the subtropical forest landscape. This diversity is directly and indirectly influenced by abiotic and biotic factors (e.g. slope, soil, traits, taxonomic diversity; r2 = 0.43). While a notable bivariate relationship between AGB and leaf phenological diversity was identified (r = -0.24, P < 0.05), this relationship did not hold in SEM analysis after considering interactions with other biotic and abiotic factors (P > 0.05). These findings unveil the underlying mechanism regulating intra-site leaf phenological diversity. While leaf phenology is known to be associated with ecosystem properties, our findings confirm that AGB is primarily influenced by functional trait composition and taxonomic diversity rather than leaf phenological diversity.


Asunto(s)
Biodiversidad , Bosques , Hojas de la Planta , Clima Tropical , Hojas de la Planta/fisiología , Biomasa , Suelo , China
3.
Environ Sci Technol ; 58(18): 7891-7903, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38602183

RESUMEN

Tropospheric nitrogen dioxide (NO2) poses a serious threat to the environmental quality and public health. Satellite NO2 observations have been continuously used to monitor NO2 variations and improve model performances. However, the accuracy of satellite NO2 retrieval depends on the knowledge of aerosol optical properties, in particular for urban agglomerations accompanied by significant changes in aerosol characteristics. In this study, we investigate the impacts of aerosol composition on tropospheric NO2 retrieval for an 18 year global data set from Global Ozone Monitoring Experiment (GOME)-series satellite sensors. With a focus on cloud-free scenes dominated by the presence of aerosols, individual aerosol composition affects the uncertainties of tropospheric NO2 columns through impacts on the aerosol loading amount, relative vertical distribution of aerosol and NO2, aerosol absorption properties, and surface albedo determination. Among aerosol compositions, secondary inorganic aerosol mostly dominates the NO2 uncertainty by up to 43.5% in urban agglomerations, while organic aerosols contribute significantly to the NO2 uncertainty by -8.9 to 37.3% during biomass burning seasons. The possible contrary influences from different aerosol species highlight the importance and complexity of aerosol correction on tropospheric NO2 retrieval and indicate the need for a full picture of aerosol properties. This is of particular importance for interpreting seasonal variations or long-term trends of tropospheric NO2 columns as well as for mitigating ozone and fine particulate matter pollution.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Dióxido de Nitrógeno , Estaciones del Año , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis
4.
Environ Sci Technol ; 58(22): 9760-9769, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38775357

RESUMEN

Peroxyacetyl nitrate (PAN) is produced in the atmosphere by photochemical oxidation of non-methane volatile organic compounds in the presence of nitrogen oxides (NOx), and it can be transported over long distances at cold temperatures before decomposing thermally to release NOx in the remote troposphere. It is both a tracer and a precursor for transpacific ozone pollution transported from East Asia to North America. Here, we directly demonstrate this transport with PAN satellite observations from the infrared atmospheric sounding interferometer (IASI). We reprocess the IASI PAN retrievals by replacing the constant prior vertical profile with vertical shape factors from the GEOS-Chem model that capture the contrasting shapes observed from aircraft over South Korea (KORUS-AQ) and the North Pacific (ATom). The reprocessed IASI PAN observations show maximum transpacific transport of East Asian pollution in spring, with events over the Northeast Pacific offshore from the Western US associated in GEOS-Chem with elevated ozone in the lower free troposphere. However, these events increase surface ozone in the US by less than 1 ppbv because the East Asian pollution mainly remains offshore as it circulates the Pacific High.


Asunto(s)
Ozono , Ozono/química , Atmósfera/química , Contaminantes Atmosféricos , Monitoreo del Ambiente
5.
Environ Res ; 261: 119633, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39025348

RESUMEN

The Geostationary Environment Monitoring Spectrometer (GEMS) is the world's first geostationary instrument that monitors hourly gaseous air pollutant levels, including nitrogen dioxide (NO2). Using the first-of-its-kind capabilities of GEMS NO2 data, we examined how well GEMS NO2 levels can explain the spatiotemporal variabilities in hourly NO2 concentrations in the Republic of Korea for the year 2022. A correlation analysis between hourly GEMS NO2 levels and ground NO2 concentrations showed a higher spatial correlation [Pearson r = 0.56 (SD = 0.20)] than a temporal one [Pearson r = 0.42 (SD = 0.14)], on average. To take advantage of the enhanced spatial predictability of GEMS NO2 data, we employed a mixed effects model to allow hour-specific relationships between GEMS NO2 and NO2 concentrations on a given day in each region and subsequently estimated hourly NO2 concentrations in all urban and rural areas. The 10-fold cross validation demonstrated R2 = 0.72, mean absolute error (MAE) = 3.7 ppb, and root mean squared error (RMSE) = 5.5 ppb. The hourly variations of the relationships were attributed particularly to those of wind speed among meteorological parameters considered in this study. The spatial distributions of hourly estimated NO2 concentrations were highly correlated between hours [average r = 0.91 (SD = 0.06)]. Nonetheless, they represented the diurnal patterns of urban versus rural NO2 contrasts during the day [urban/rural NO2 ratios from 1.22 (5 p.m.) to 1.37 (12 p.m.)]. The newly retrieved GEMS NO2 data enable temporally as well as spatially resolved NO2 exposure assessment. In combination with the time-activity patterns of individual subjects, the GEMS NO2 data can generate 'sub-population' exposure estimates and therefore enhance health effect studies.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Dióxido de Nitrógeno , Dióxido de Nitrógeno/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Contaminantes Atmosféricos/análisis , República de Corea , Humanos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Nave Espacial
6.
J Environ Manage ; 355: 120413, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442655

RESUMEN

Active and passive approaches to rewilding and ecological restoration are increasingly considered to promote nature recovery at scale. However, historical data on vegetation trajectories have rarely been used to inform decisions on whether active or passive management is most appropriate to aid recovery of a specific ecosystem, which can lead to sub-optimal approaches being deployed and reduced biodiversity benefits. To demonstrate how understanding past changes can inform future management strategies, this study used satellite remote sensing data to analyse the changes in land cover and primary productivity within the Greater Côa Valley in Portugal, which has experienced wide-scale land abandonment. Results show that some areas in the Valley regenerated well following land abandonment in the region, leading to a more heterogeneous landscape of habitats for wildlife, whereas in other areas passive recovery was slow. As Rewilding Portugal intensifies its nature recovery efforts in the region, this study calls for strategic deployment of passive and active approaches to maximise conservation benefits. More broadly, our results highlight how baseline vegetational trajectories and contextual information can help inform whether active or passive management approaches may be suitable on a site-by-site basis for both rewilding and restoration projects.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/métodos , Biodiversidad , Animales Salvajes , Portugal
7.
J Environ Manage ; 365: 121617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968896

RESUMEN

Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L-1, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L-1, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L-1/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.


Asunto(s)
Monitoreo del Ambiente , Islas , Material Particulado , Material Particulado/análisis , Tecnología de Sensores Remotos , Ecosistema , Imágenes Satelitales , China
8.
J Environ Manage ; 349: 119518, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944321

RESUMEN

This forecasting approach may be useful for water managers and associated public health managers to predict near-term future high-risk cyanobacterial harmful algal blooms (cyanoHAB) occurrence. Freshwater cyanoHABs may grow to excessive concentrations and cause human, animal, and environmental health concerns in lakes and reservoirs. Knowledge of the timing and location of cyanoHAB events is important for water quality management of recreational and drinking water systems. No quantitative tool exists to forecast cyanoHABs across broad geographic scales and at regular intervals. Publicly available satellite monitoring has proven effective in detecting cyanobacteria biomass near-real time within the United States. Weekly cyanobacteria abundance was quantified from the Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite as the response variable. An Integrated Nested Laplace Approximation (INLA) hierarchical Bayesian spatiotemporal model was applied to forecast World Health Organization (WHO) recreation Alert Level 1 exceedance >12 µg L-1 chlorophyll-a with cyanobacteria dominance for 2192 satellite resolved lakes in the United States across nine climate zones. The INLA model was compared against support vector classifier and random forest machine learning models; and Dense Neural Network, Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Gneural Network (GNU) neural network models. Predictors were limited to data sources relevant to cyanobacterial growth, readily available on a weekly basis, and at the national scale for operational forecasting. Relevant predictors included water surface temperature, precipitation, and lake geomorphology. Overall, the INLA model outperformed the machine learning and neural network models with prediction accuracy of 90% with 88% sensitivity, 91% specificity, and 49% precision as demonstrated by training the model with data from 2017 through 2020 and independently assessing predictions with data from the 2021 calendar year. The probability of true positive responses was greater than false positive responses and the probability of true negative responses was less than false negative responses. This indicated the model correctly assigned lower probabilities of events when they didn't exceed the WHO Alert Level 1 threshold and assigned higher probabilities when events did exceed the threshold. The INLA model was robust to missing data and unbalanced sampling between waterbodies.


Asunto(s)
Cianobacterias , Floraciones de Algas Nocivas , Estados Unidos , Humanos , Lagos/microbiología , Teorema de Bayes , Cianobacterias/fisiología , Calidad del Agua , Monitoreo del Ambiente
9.
Environ Monit Assess ; 196(6): 580, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805109

RESUMEN

Urban green spaces are central components of urban ecosystems, providing refuge for wildlife while helping 'future proof' cities against climate change. Conversion of urban green spaces to artificial turf has become increasingly popular in various developed countries, such as the UK, leading to reduced urban ecosystem services delivery. To date, there is no established satellite remote sensing method for reliably detecting and mapping artificial turf expansion at scale. We here assess the combined use of very high-resolution multispectral satellite imagery and classical, open source, supervised classification approaches to map artificial lawns in a typical British city. Both object-based and pixel-based classifications struggled to reliably detect artificial turf, with large patches of artificial turf not being any more reliably identified than small patches of artificial turf. As urban ecosystems are increasingly recognised for their key contributions to human wellbeing and health, the poor performance of these standard methods highlights the urgency of developing and applying new, easily accessible approaches for the monitoring of these important ecosystems.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Imágenes Satelitales , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Ciudades , Conservación de los Recursos Naturales/métodos
10.
Glob Chang Biol ; 29(1): 110-125, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36169920

RESUMEN

Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.


Asunto(s)
Cambio Climático , Plantas , Temperatura
11.
Glob Chang Biol ; 29(13): 3634-3651, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37070967

RESUMEN

The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.


Asunto(s)
Sequías , Ecosistema , Atmósfera , Ciclo del Carbono , Suelo , Plantas , Carbono , Cambio Climático
12.
J Phycol ; 59(5): 1107-1111, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37578989

RESUMEN

A cryptogenic, invasive-like red macroalga, Chondria tumulosa, was first observed in 2016 forming thick mats on the forereef of Manawai Atoll within Papahanaumokuakea Marine National Monument. Subsequent expeditions revealed an increased abundance of this alga. In 2021, unattached C. tumulosa was observed forming a network of dark, meandering accumulations throughout the atoll's inner lagoon. High-resolution satellite imagery revealed that these accumulations became visible in 2015 (length: ~0.74 km; area: ~0.88 km2 ) and increased 56-fold in length and 115-fold in area by 2021 (length: 41.32 km; area: 101.34 km2 ). An exponential expansion rate of ~16.02 km · y-1 (length), ~44.75 km2 · y-1 (area). This study presents the comprehensive temporal and spatial expansion of C. tumulosa accumulations for Manawai Atoll since its discovery, providing ecologist and resource managers with a proxy to gauge the overall abundance trend of this invasive-like alga.


Asunto(s)
Antozoos , Rhodophyta , Algas Marinas , Animales , Arrecifes de Coral
13.
J Hydrol (Amst) ; 619: 1-14, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38273893

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) in reservoirs can be transported to downstream waters via scheduled discharges. Transport dynamics are difficult to capture in traditional cyanoHAB monitoring, which can be spatially disparate and temporally discontinuous. The introduction of satellite remote sensing for cyanoHAB monitoring provides opportunities to detect where cyanoHABs occur in relation to reservoir release locations, like canal inlets. The study objectives were to assess (1) differences in reservoir cyanoHAB frequencies as determined by in situ and remotely sensed data and (2) the feasibility of using satellite imagery to identify conditions associated with release-driven cyanoHAB export. As a representative case, Lake Okeechobee and the St. Lucie Estuary (Florida, USA), which receives controlled releases from Lake Okeechobee, were examined. Both systems are impacted by cyanoHABs, and the St. Lucie Estuary experienced states of emergency for extreme cyanoHABs in 2016 and 2018. Using the European Space Agency's Sentinel-3 OLCI imagery processed with the Cyanobacteria Index (CIcyano), cyanoHAB frequencies across Lake Okeechobee from May 2016-April 2021 were compared to frequencies from in situ data. Strong agreement was observed in frequency rankings between the in situ and remotely sensed data in capturing intra-annual variability in bloom frequencies across Lake Okeechobee (Kendall's tau = 0.85, p-value = 0.0002), whereas no alignment was observed when evaluating inter-annual variation (Kendall's tau = 0, p-value = 1). Further, remotely sensed observations revealed that cyanoHABs were highly frequent near the inlet to the canal connecting Lake Okeechobee to the St. Lucie Estuary in state-of-emergency years, a pattern not evident from in situ data alone. This study demonstrates how remote sensing can complement traditional cyanoHAB monitoring to inform reservoir release decision making.

14.
Sensors (Basel) ; 23(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37571787

RESUMEN

Soil salinization is a major obstacle to land productivity, crop yield and crop quality in arid areas and directly affects food security. Soil profile salt data are key for accurately determining irrigation volumes. To explore the potential for using Landsat 8 time-series data to monitor soil salinization, 172 Landsat 8 images from 2013 to 2019 were obtained from the Alar Reclamation Area of Xinjiang, northwest China. The multiyear extreme dataset was synthesized from the annual maximum or minimum values of 16 vegetation indices, which were combined with the soil conductivity of 540 samples from soil profiles at 0~0.375 m, 0~0.75 m and 0~1.00 m depths in 30 cotton fields with varying degrees of salinization as investigated by EM38-MK2. Three remote sensing monitoring models for soil conductivity at different depths were constructed using the Cubist method, and digital mapping was carried out. The results showed that the Cubist model of soil profile electrical conductivity from 0 to 0.375 m, 0 to 0.75 m and 0 to 1.00 m showed high prediction accuracy, and the determination coefficients of the prediction set were 0.80, 0.74 and 0.72, respectively. Therefore, it is feasible to use a multiyear extreme value for the vegetation index combined with a Cubist modeling method to monitor soil profile salinization at a regional scale.

15.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850449

RESUMEN

Satellite remote sensing provides a unique opportunity for calibrating land surface models due to their direct measurements of various hydrological variables as well as extensive spatial and temporal coverage. This study aims to apply terrestrial water storage (TWS) estimated from the gravity recovery and climate experiment (GRACE) mission as well as soil moisture products from advanced microwave scanning radiometer-earth observing system (AMSR-E) to calibrate a land surface model using multi-objective evolutionary algorithms. For this purpose, the non-dominated sorting genetic algorithm (NSGA) is used to improve the model's parameters. The calibration is carried out for the period of two years 2003 and 2010 (calibration period) in Australia, and the impact is further monitored over 2011 (forecasting period). A new combined objective function based on the observations' uncertainty is developed to efficiently improve the model parameters for a consistent and reliable forecasting skill. According to the evaluation of the results against independent measurements, it is found that the calibrated model parameters lead to better model simulations both in the calibration and forecasting period.

16.
J Environ Manage ; 337: 117669, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966636

RESUMEN

Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar's WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement between reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann-Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had moderate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass distribution within each study area. This study demonstrates that the same methods can be applied across scenes spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step toward developing a consistent, operational approach for mapping seagrass coverage at the national and global scales. Accompanying this manuscript are instructional videos describing the processing workflow, including data acquisition, data processing, and satellite image classification. These instructional videos may serve as a management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems.


Asunto(s)
Ecosistema , Imágenes Satelitales , Estados Unidos , Monitoreo del Ambiente/métodos
17.
J Environ Manage ; 336: 117621, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870318

RESUMEN

Cropland abandonment is a widespread land-change process globally, which can stem from the accelerated outmigration of the population from rural to urban areas, socio-economic and political changes, catastrophes, and other trigger events. Clouds limit the utility of optical satellite data to monitor cropland abandonment in highly fragmented mountain agricultural landscapes of tropical and subtropical regions, including the south of China. Taking Nanjing County of China as an example, we developed a novel approach by utilizing multisource satellite (Landsat and Sentinel-2) imagery to map multiple trajectories of cropland abandonment (transitioning from cropland to grassland, shrubs and forest) in subtropical mountainous landscapes. Then, we employed a redundancy analysis (RDA) to identify the spatial association of cropland abandonment considering agricultural productivity, physiography, locational characteristics and economic factors. Results indicate the great suitability of harmonized Landsat 8 and Sentinel-2 images to distinguish multiple trajectories of cropland abandonment in subtropical mountainous areas. Our framework of mapping cropland abandonment resulted in good producer's (78.2%) and user's (81.3%) accuracies. The statistical analysis showed 31.85% of croplands cultivated in 2000 were abandoned by 2018, and more than a quarter of townships experienced cropland abandonment with high abandoned rates (>38%). Cropland abandonment mainly occurred in relatively unfavorable areas for agricultural production, for instance with a slope above 6°. Slope and the proximity to the nearest settlement explained 65.4% and 8.1% of the variation of cropland abandonment at the township level, respectively. The developed approaches on both mapping cropland abandonment and modeling determinants can be highly relevant to monitor multiple trajectories of cropland abandonment and ascribe their determinants not only in mountainous China but also elsewhere and thus promote the formulation of land-use policies that aim to steer cropland abandonment.


Asunto(s)
Agricultura , Bosques , Humanos , Agricultura/métodos , China , Población Rural , Productos Agrícolas
18.
J Environ Manage ; 347: 119198, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804627

RESUMEN

The location and layout of enterprises have an important impact on local air quality. However, a few studies on exploring of the optimal layout of gas-related enterprises from the perspective of optimizing the layout of air pollution sources. This study developed a method for the evaluation of air pollution source layout based on air pollutant emission inventory data, atmospheric self-purification capacity data, and satellite remote sensing air quality data. Taking Shaanxi Province as an example, the Moran's I index and GIS spatial analysis techniques were used to evaluate the layout of air pollution sources, analyze the spatial variation characteristics of air pollution sources, and propose specific countermeasures to optimize the layout of air pollution sources. Results showed that northern Shaanxi and Guanzhong Plain are the most unsuitable for the distribution of NOx and CO sources, accounting for 13.78% and 21.77% of the total area, respectively. The most suitable area for the distribution of NOx is southern Shaanxi, accounting for 65.77% of the total area, mainly concentrated in Hanzhong and Ankang regions. The most suitable area for the distribution of CO is southern Shaanxi, accounting for 40.97% of the total area, mainly concentrated in Hanzhong and Shangluo regions. The findings of this study could supplement and improve the evaluation of the layout of industrial enterprises in China from technical and methodological aspects, and provide new insight for local governments to adjust and optimize the layout of air pollution sources.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , China , Material Particulado/análisis
19.
Technol Forecast Soc Change ; 189: 1-13, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39022384

RESUMEN

The management and governance of our surface waters is core to life and prosperity on our planet. However, monitoring data are not available to many potential users and the disparate nature of water bodies makes consistent monitoring across so many systems difficult. While satellite Earth observation (EO) offers solutions, there are numerous challenges that limit the use of satellite EO for water monitoring. To understand the perceptions of using satellite EO for water quality monitoring, a survey was conducted within academia and the water quality management sector. Study objectives were to assess community understanding of satellite EO water quality data, identify barriers in the adoption of satellite EO data, and analyse trust in satellite EO data. Most (40 %) participants were beginners with little understanding of satellite EO. Participants indicated problems with satellite EO data accessibility (31 %) and interpretability (26 %). Results showed a high level of trust with satellite EO data and higher trust with in-situ EO data. This study highlighted the gap between water science, applied social science, and policy. A transdisciplinary approach to managing water resources is needed to bridge water disciplines and take a key role in areas such as social issues, knowledge brokering, and translation.

20.
Ecol Appl ; 32(2): e2518, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918831

RESUMEN

Extreme climate events, together with anthropogenic land-use changes, have led to the rise of megafires (i.e., fires at the top of the frequency size distribution) in many world regions. Megafires imply that the center of the burnt area is far from the unburnt; therefore, recolonization may be critical for species with low dispersal abilities such as reptiles. We aimed to evaluate the effect of megafires on a reptile community, exploring to what extent reptile responses are spatially shaped by the distance to the unburnt area. We examined the short-term spatiotemporal response of a Mediterranean reptile community after two megafires (>20,000 ha) that occurred in summer 2012 in eastern Spain. Reptiles were sampled over 4 years after the fire in burnt plots located at different distances from the fire perimeter (edge, middle, and center), and in adjacent unburnt plots. Reptile responses were modeled with fire history, as well as climate and remotely sensed environmental variables. In total, we recorded 522 reptiles from 12 species (11 species in the burnt plots and nine in the unburnt plots). Reptile abundance decreased in burnt compared with unburnt plots. The community composition and species richness did not vary either spatially (unburnt and burnt plots) or temporally (during the 4 years). The persistence of reptiles in the burnt area supported their resilience to megafires. The most common lizard species was Psammodromus algirus; both adults and juveniles were found in all unburnt and burnt plots. This species showed lower abundances in burnt areas compared with the unburnt and a slow short-term abundance recovery. The lizard Psammodromus edwarsianus was much less abundant and showed a tendency to increase its abundance in burnt plots compared with unburnt plots. Within the megafire area, P. algirus and P. edwarsianus abundances correlated with the thermal-moisture environment and vegetation recovery regardless of the distance from the fire edge. These results indicated the absence of a short-term reptile recolonization from the unburnt zone, demonstrating that reptiles are resilient (in situ persistence) to megafires when environmental conditions are favorable.


Asunto(s)
Incendios , Lagartos , Animales , Reptiles , Estaciones del Año , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA