Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Virol J ; 18(1): 132, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193186

RESUMEN

BACKGROUND: To investigate the relationship between polymorphism of scavenger receptor class B member 2 (SCARB2) gene and clinical severity of enterovirus (EV)-71 associated hand-foot-mouth disease (HFMD). METHODS: Among the 100 recruited cases, 56 were in the severe HFMD group (case group) and 44 were in the general HFMD group (control group). By screening functional single nucleotide polymorphisms (SNPs) and hot SNPs, and performing SNP site optimization, some SNP sites of SCARB2 gene were selected for analysis. Genotyping was performed using a MassArray platform. PLINK software was used for statistical processing and analysis of the correlation differences between the mutant genotypes in the severe and general HFMD groups. The relationship between the SNPs and clinical severity of enterovirus (EV)-71 associated HFMD was assessed. RESULTS: 28 SNPs in SCARB2 were selected by site optimization. Then three loci were not in agreement with the minor allele frequency (MAF) in the 1000 Han Chinese in Beijing (CHB) dataset. Another three loci could not be detected. Nine loci were not suitable for further analysis (MAF < 0.01 and Hardy-Weinberg [HWE] P < 0.001). A total of 13 sites were subsequently analyzed. Through Fisher analysis, the frequency of the rs6812193 T allele was 0.134 and 0.034 in the severe and general HFMD groups, respectively (P 0.023 < 0.05, odds ratio [OR] 4.381 > 1). Logistic regression analysis of rs6812193 T alleles between the severe and general HFMD groups, respectively (P 0.023 < 0.05, OR 4.412 > 1, L95 1.210 > 1). Genotype logistic regression analysis of the rs6812193 alleles CT + TT versus CC gave an OR of 4.56 (95% confidence interval [95% CI] 1.22-17.04, P = 0.012). CONCLUSION: The rs6812193 T allele was a susceptibility SNP for SHFMD, and the rs6812193 polymorphism might be significantly associated with the susceptibility to EV-71 infection.


Asunto(s)
Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Proteínas de Membrana de los Lisosomas/genética , Receptores Depuradores/genética , China/epidemiología , Enterovirus Humano A/genética , Genotipo , Enfermedad de Boca, Mano y Pie/diagnóstico , Enfermedad de Boca, Mano y Pie/genética , Humanos , Lactante , Polimorfismo de Nucleótido Simple
2.
J Lipid Res ; 59(7): 1084-1093, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29627764

RESUMEN

The widely expressed transmembrane glycoprotein, cluster of differentiation 36 (CD36), a scavenger receptor class B protein (SR-B2), serves many functions in lipid metabolism and signaling. Here, we review CD36's role in facilitating cellular long-chain fatty acid uptake across the plasma membrane, particularly in heart and skeletal muscles. CD36 acts in concert with other membrane proteins, such as peripheral plasma membrane fatty acid-binding protein, and is an intracellular docking site for cytoplasmic fatty acid-binding protein. The cellular fatty-acid uptake rate is governed primarily by the presence of CD36 at the cell surface, which is regulated by the subcellular vesicular recycling of CD36 from endosomes to the plasma membrane. CD36 has been implicated in dysregulated fatty acid and lipid metabolism in pathophysiological conditions, particularly in high-fat diet-induced insulin resistance and diabetic cardiomyopathy. Current research is exploring signaling pathways and vesicular trafficking routes involving CD36 to identify metabolic targets to manipulate the cellular utilization of fatty acids. Because of its rate-controlling function in the use of fatty acids in the heart and muscle, CD36 would be a preferable target to protect myocytes against lipotoxicity. Despite a poor understanding of its mechanism of action, CD36 has emerged as a pivotal membrane protein involved in whole-body lipid homeostasis.


Asunto(s)
Antígenos CD36/metabolismo , Ácidos Grasos/metabolismo , Animales , Transporte Biológico , Antígenos CD36/química , Humanos , Resistencia a la Insulina , Músculos/metabolismo
3.
J Lipid Atheroscler ; 9(1): 66-78, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32821722

RESUMEN

The heart faces the challenge of adjusting the rate of fatty acid uptake to match myocardial demand for energy provision at any given moment, avoiding both too low uptake rates, which could elicit an energy deficit, and too high uptake rates, which pose the risk of excess lipid accumulation and lipotoxicity. The transmembrane glycoprotein cluster of differentiation 36 (CD36), a scavenger receptor (B2), serves many functions in lipid metabolism and signaling. In the heart, CD36 is the main sarcolemmal lipid transporter involved in the rate-limiting kinetic step in cardiac lipid utilization. The cellular fatty acid uptake rate is determined by the presence of CD36 at the cell surface, which is regulated by subcellular vesicular recycling from endosomes to the sarcolemma. CD36 has been implicated in dysregulated fatty acid and lipid metabolism in pathophysiological conditions, particularly high-fat diet-induced insulin resistance and diabetic cardiomyopathy. Thus, in conditions of chronic lipid overload, high levels of CD36 are moved to the sarcolemma, setting the heart on a route towards increased lipid uptake, excessive lipid accumulation, insulin resistance, and eventually contractile dysfunction. Insight into the subcellular trafficking machinery of CD36 will provide novel targets to treat the lipid-overloaded heart. A screen for CD36-dedicated trafficking proteins found that vacuolar-type H+-ATPase and specific vesicle-associated membrane proteins, among others, were uniquely involved in CD36 recycling. Preliminary data suggest that these proteins may offer clues on how to manipulate myocardial lipid uptake, and thus could be promising targets for metabolic intervention therapy to treat the failing heart.

4.
Emerg Microbes Infect ; 9(1): 1194-1205, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32397909

RESUMEN

Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.


Asunto(s)
Antivirales/administración & dosificación , Proteínas de la Cápside/genética , Cinamatos/administración & dosificación , Depsidos/administración & dosificación , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/tratamiento farmacológico , Salvia miltiorrhiza/química , Animales , Antivirales/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/química , Línea Celular , Cinamatos/farmacología , Depsidos/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/metabolismo , Infecciones por Enterovirus/virología , Heparitina Sulfato/metabolismo , Humanos , Células Jurkat , Glicoproteínas de Membrana/metabolismo , Ratones , Mutación , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Unión Proteica/efectos de los fármacos , Electricidad Estática , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/química , Factores de Virulencia/genética , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA