Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398622

RESUMEN

C-scorpionate metal complexes, specifically, [NiCl2(tpm)]·3H2O, [CoCl2(tpm)]·3H2O and [PdCl2(tpm)] [tpm = hydrotris(1H-pyrazol-1-yl)methane], were effective in the N-formylation and N-methylation of amines using carbon dioxide, as carbon source, in the presence of sodium borohydride. Various parameters were studied, including reaction time, temperature, solvent volume, presence of additives, and catalyst amount. These parameters were found to have a significant impact on the selectivity of the product. [NiCl2(tpm)]·3H2O exhibited good conversion at 80 °C, but its selectivity towards formamide decreased with prolonged reaction time. Increasing the amount of [NiCl2(tpm)]·3H2O, the selectivity changed. [PdCl2(tpm)] showed different selectivity compared to [NiCl2(tpm)]·3H2O, while [CoCl2(tpm)]·3H2O presented poor results. Monitoring the reaction course by 1H NMR revealed the presence of an intermediate species that influenced product formation. These results highlight the versatility and catalytic potential of C-scorpionate metal complexes in the N-formylation/N-methylation of amines in the catalytic system (NaBH4/MeCN/CO2).

2.
Molecules ; 28(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375380

RESUMEN

The coordination chemistry of scorpionate ligands based on borates containing the 7-azaindole heterocycle is relatively unexplored. Thus, there is a requirement to further understand their coordination chemistry. This article outlines the synthesis and characterization of a family of complexes containing anionic flexible scorpionate ligands of the type [(R)(bis-7-azaindolyl)borohydride]- ([RBai]-), where R = Me, Ph or naphthyl. The three ligands were coordinated to a series of copper(I) complexes containing a phosphine co-ligand to form the complexes, [Cu(MeBai)(PPh3)] (1), [Cu(PhBai)(PPh3)] (2), [Cu(NaphthBai)(PPh3)] (3), [Cu(MeBai)(PCy3)] (4), [Cu(PhBai)(PCy3)] (5) and [Cu(NaphthBai)(PCy3)] (6). Additional copper(II) complexes, namely, [Cu(MeBai)2] (7) and [Cu(PhBai)2] (8), were obtained during attempts to obtain single crystals from complexes 4 and 2, respectively. Complexes 7 and 8 were also prepared independently from CuCl2 and two equivalents of the corresponding Li[RBai] salt alongside an additional complex, namely, [Cu(NaphthBai)2] (9). The copper(I) and copper(II) complexes were characterized using spectroscopic and analytical methods. Furthermore, a crystal structure was obtained for eight of the nine complexes. In all cases, the boron-based ligand was found to bind to the metal centers via a κ3-N,N,H coordination mode.

3.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513324

RESUMEN

The growing worldwide cancer incidence, coupled to the increasing occurrence of multidrug cancer resistance, requires a continuous effort towards the identification of new leads for cancer management. In this work, two C-scorpionate complexes, [FeCl2(κ3-Tpm)] (1) and [Co(κ3-TpmOH)2](NO3)2 (2), (Tpm = hydrotris(pyrazol-1-yl)methane and TpmOH = 2,2,2-tris(pyrazol-1-yl)ethanol), were studied as potential scaffolds for future anticancer drug development. Their cytotoxicity and cell migration inhibitory activity were analyzed, and an untargeted metabolomics approach was employed to elucidate the biological processes significantly affected by these two complexes, using two tumoral cell lines (B16 and HCT116) and a non-tumoral cell line (HaCaT). While [FeCl2(κ3-Tpm)] did not display a significant cytotoxicity, [Co(κ3-TpmOH)2](NO3)2 was particularly cytotoxic against the HCT116 cell line. While [Co(κ3-TpmOH)2](NO3)2 significantly inhibited cell migration in all tested cell lines, [FeCl2(κ3-Tpm)] displayed a mixed activity. From a metabolomics perspective, exposure to [FeCl2(κ3-Tpm)] was associated with changes in various metabolic pathways involving tyrosine, where iron-dependent enzymes are particularly relevant. On the other hand, [Co(κ3-TpmOH)2](NO3)2 was associated with dysregulation of cell adhesion and membrane structural pathways, suggesting that its antiproliferative and anti-migration properties could be due to changes in the overall cellular adhesion mechanisms.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Humanos , Antineoplásicos/farmacología , Línea Celular , Complejos de Coordinación/química
4.
J Comput Chem ; 43(11): 796-803, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35277876

RESUMEN

The bonding situation of Ag(I)CO complexes having a Scorpionate ligand directly attached to the transition metal has been analyzed in detail by means of relativistic density functional theory calculations. To this end, different experimentally characterized complexes together with other representative species have been considered to rationalize the observed shift of the corresponding ν(CO) stretching frequencies and the influence of the substituents in the Scorpionate ligand. With the help of the energy decomposition analysis method combined with the natural orbital for chemical valence it is found that the main contribution to the bonding comes from the electrostatic attractions between the LAg(I) and CO fragments. Despite that, the LAg â†’ CO π-backdonation is also significant in these species as well as in related LCu(I)CO complexes.

5.
Molecules ; 27(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889437

RESUMEN

Herein, we report the synthesis of a series of heteroleptic magnesium complexes stabilized with the scorpionate ligand tris(2-pyridylthio)methanide (Tptm). The compounds of the general formula [Mg(Tptm)(X)] (1-X; X = Cl, Br, I) were obtained via protonolysis reaction between the proligand and selected Grignard reagents. Attempts to isolate the potassium derivative K(Tptm) lead to decomposition of Tptm and formation of the alkene (C5H4N-S)2C=C(C5H4N-S)2, and this degradation was also modelled using DFT methods. Compound 1-I was treated with K(CH2Ph), affording the degradation product [Mg(Bptm)2] (2; Bptm = {CH(S-C5NH3)2}-). We analyzed and quantified the steric properties of the Tptm ligand using the structural information of the compounds obtained in this study paired with buried volume calculations, also adding the structural data of HTptm and its CF3-substituted congener (HTptmCF3). These studies highlight the highly flexible nature of this ligand scaffold and its ability to stabilize various coordination motifs and geometries, which is a highly desirable feature in the design of novel organometallic reagents and catalysts.


Asunto(s)
Magnesio , Cristalografía por Rayos X , Ligandos , Modelos Moleculares
6.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669560

RESUMEN

The production of cyclic carbonates from CO2 cycloaddition to epoxides, using the C-scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}] (pz = 1H-pyrazol-1-yl) as a catalyst, is achieved in excellent yields (up to 98%) in a tailor-made ionic liquid (IL) medium under mild conditions (80 °C; 1-8 bar). A favorable synergistic catalytic effect was found in the [FeCl2{κ3-HC(pz)3}]/IL system. Notably, in addition to exhibiting remarkable activity, the catalyst is stable during ten consecutive cycles, the first decrease (11%) on the cyclic carbonate yield being observed during the 11th cycle. The use of C-scorpionate complexes in ionic liquids to afford cyclic carbonates is presented herein for the first time.


Asunto(s)
Dióxido de Carbono/química , Carbonatos/química , Reacción de Cicloadición , Hierro/química , Catálisis , Compuestos Epoxi/química , Líquidos Iónicos/química , Cinética , Espectrofotometría Infrarroja , Temperatura
7.
Chemistry ; 26(54): 12431-12444, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32640122

RESUMEN

A series of WIV alkyne complexes with the sulfur-rich ligand hydridotris(2-mercapto-1-methylimidazolyl) borate) (TmMe ) are presented as bio-inspired models to elucidate the mechanism of the tungstoenzyme acetylene hydratase (AH). The mono- and/or bis-alkyne precursors were reacted with NaTmMe and the resulting complexes [W(CO)(C2 R2 )(TmMe )Br] (R=H 1, Me 2) oxidized to the target [WE(C2 R2 )(TmMe )Br] (E=O, R=H 4, Me 5; E=S, R=H 6, Me 7) using pyridine-N-oxide and methylthiirane. Halide abstraction with TlOTf in MeCN gave the cationic complexes [WE(C2 R2 )(MeCN)(TmMe )](OTf) (E=CO, R=H 10, Me 11; E=O, R=H 12, Me 13; E=S, R=H 14, Me 15). Without MeCN, dinuclear complexes [W2 O(µ-O)(C2 Me2 )2 (TmMe )2 ](OTf)2 (8) and [W2 (µ-S)2 (C2 Me2 )(TmMe )2 ](OTf)2 (9) could be isolated showing distinct differences between the oxido and sulfido system with the latter exhibiting only one molecule of C2 Me2 . This provides evidence that a fine balance of the softness at W is important for acetylene coordination. Upon dissolving complex 8 in acetonitrile complex 13 is reconstituted in contrast to 9. All complexes exhibit the desired stability toward water and the observed effective coordination of the scorpionate ligand avoids decomposition to disulfide, an often-occurring reaction in sulfur ligand chemistry. Hence, the data presented here point toward a mechanism with a direct coordination of acetylene in the active site and provide the basis for further model chemistry for acetylene hydratase.


Asunto(s)
Boratos , Complejos de Coordinación/química , Hidroliasas/química , Tungsteno , Ligandos
8.
Molecules ; 25(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202876

RESUMEN

Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+·), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2-) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2-·), (IC50 values equal to 5.6 ± 0.2 µM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).


Asunto(s)
Antioxidantes/análisis , Cadmio/análisis , Cobre/análisis , Zinc/análisis , Benzotiazoles/química , Compuestos de Bifenilo/química , Radical Hidroxilo/química , Concentración 50 Inhibidora , Ligandos , Espectroscopía de Resonancia Magnética , Óxido Nítrico/química , Peróxidos/química , Picratos/química , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfónicos/química , Superóxidos/química , Temperatura , Talio/química
9.
Molecules ; 25(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266077

RESUMEN

The direct, one-pot oxidation of ethane to acetic acid was, for the first time, performed using a C-scorpionate complex anchored onto a magnetic core-shell support, the Fe3O4/TiO2/[FeCl2{κ3-HC(pz)3}] composite. This catalytic system, where the magnetic catalyst is easily recovered and reused, is highly selective to the acetic acid synthesis. The performed green metrics calculations highlight the "greeness" of the new ethane oxidation procedure.


Asunto(s)
Ácido Acético/química , Complejos de Coordinación/química , Etano/química , Compuestos de Hierro/química , Catálisis , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
10.
Eur J Inorg Chem ; 2019(43): 4621-4624, 2019 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-31894180

RESUMEN

Bistable spin crossover complexes such as [Fe{HB(pz)3}2] (pzH = pyrazole) show promise for sensor applications and electrically-controlled data storage units, but exploiting their potential hinges on their integration into a functional environment. We here present a system enabling such covalent post-functionalization steps in both symmetric and asymmetric patterns, based on the amine-functionalized complex [Fe{HB(4-NH2pz)(pz)2}2], obtained by reduction of the nitro analogue. The building block aspects of [Fe{HB(4-NH2pz)(pz)2}2] are showcased by its transformation into amide, imine and azo derivatives, which are structurally and magnetically characterized. All tris(pyrazolyl)borate complexes retain the spin crossover properties of their parent compound, with spin crossover temperatures ranging from 350 to 430 K. The transition parameters are correlated with the electronic properties of the functionalizing group, opening the possibility of fine-tuning the spin crossover properties of the building block as it is integrated in the environment of choice.

11.
Chemistry ; 24(53): 14254-14268, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-29993157

RESUMEN

A series of tris(pyrazolyl)alkane (RCTp) scorpionate ligands of the type RCTp3-R' (R=Me, nBu, SiMe3 ; R'=H, Me, Ph, iPr, tBu) were synthesized and their ability to coordinate methylmagnesium moieties was examined. The reaction of Mg(AlMe4 )2 with neutral proligands HCTp3-Ph or Me3 SiCTp3-Me , containing a non-innocent backbone methine moiety, led to deprotonation/rearrangement and SiMe3 /AlMe3 exchange to afford [(Me3 AlCTp3-Ph )2 Mg] and [(Me3 AlCTp3-Me )Mg(AlMe4 )], respectively, with monoanionic tripodal ligands. Treatment of sterically less demanding RCTp3-R' with Mg(AlMe4 )2 produced isostructural dicationic "metal-in-a-box" complexes of the type [(RCTp3-R' )2 Mg][AlMe4 ]2 (R=Me, nBu; R'=H, Me). Utilization of the superbulky ligands MeCTp3-Ph and MeCTp3-tBu gave monocationic complexes [(MeCTp3-Ph )MgMe][AlMe4 ] and [(MeCTp3-tBu )MgMe][Al2 Me7 ] as separated ion pairs. The reaction of Mg(AlMe4 )2 with nBuCTp3-Ph led to the formation of the dimagnesium complex [{(nBuCTp3-Ph )Mg(AlMe4 )}2 (µ-CH3 )], which features a bridging methyl moiety and terminal η1 -coordinated tetramethylaluminato ligands. Isopropyl-substituted ligand MeCTp3-iPr emerged from further fine-tuning of the steric and electronic parameters and, upon reaction with Mg(AlMe4 )2 , gave (MeCTp3-iPr )Mg(AlMe4 )2 ; this represents the first example of a magnesium bis(alkyl) complex with an intact RCTp3-R' ligand. The exact ligand cone angles Θ° of all magnesium complexes were determined according to the mathematical analysis developed by Allen et al. [J. Comput. Chem. 2013, 34, 1189-1197].

12.
Molecules ; 23(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914171

RESUMEN

Scorpionate ligands Tp* (hydrotris(3,5-dimethylpyrazol-1-yl)borate) and ToM (tris(4,4-dimethyloxazolin-2-yl)phenylborate) complexes of cobalt(II) with bidentate ligands were synthesized. Both Tp* and ToM coordinate to cobalt(II) in a tridentate fashion when the bidentate ligand is the less hindered acetylacetonate. In crystal structures, the geometry of cobalt(II) supported by the N3O2 donor set in the Tp* complex is a square-pyramid, whereas that in the ToM complex is close to a trigonal-bipyramid. Both Tp*- and ToM-acac complexes exhibit solvatochromic behavior, although the changing structural equilibria of these complexes in MeCN are quite different. In the bis(1-methylimidazol-2-yl)methylphenylborate (LPh) complexes, Tp* retains the tridentate (к³) mode, whereas ToM functions as the bidentate (к²) ligand, giving the tetrahedral cobalt(II) complex. The bowl-shaped cavity derived from the six methyl groups on ToM lead to susceptibility to the bulkiness of the opposite bidentate ligand. The entitled scorpionate compounds mediate hydrocarbon oxidation with organic peroxides. Allylic oxidation of cyclohexene occurs mainly on the reaction with tert-butyl hydroperoxide (TBHP), although the catalytic efficiency of the scorpionate ligand complexes is lower than that of Co(OAc)2 and Co(acac)2. On cyclohexane oxidation with meta-chloroperbenzoic acid (mCPBA), both ToM and Tp* complexes function as catalysts for hydroxylation. The higher electron-donating ToM complexes show faster initial reaction rates compared to the corresponding Tp* complexes.


Asunto(s)
Boratos/química , Cobalto/química , Compuestos Organometálicos/química , Catálisis , Ligandos , Estructura Molecular
13.
Molecules ; 23(8)2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111708

RESUMEN

Scorpionate ligands have played a crucial role in the development of technetium chemistry and, recently, they have also fueled important advancements in the discovery of novel diagnostic imaging agents based on the γ-emitting radionuclide technetium-99m. The purpose of this short review is to provide an illustration of the most general and relevant results in this field, however without being concerned with the details of the analytical features of the various compounds. Thus, emphasis will be given to the description of the general features of technetium complexes with scorpionate ligands including coordination modes, structural properties and an elementary bonding description. Similarly, the most relevant examples of technetium-99m radiopharmaceuticals derived from scorpionate ligands and their potential interest for nuclear imaging will be summarized.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Radiofármacos/química , Tecnecio/química , Animales , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular , Medios de Contraste/farmacocinética , Complejos de Coordinación/farmacocinética , Humanos , Ligandos , Estructura Molecular , Radiofármacos/farmacocinética , Distribución Tisular
14.
Molecules ; 23(12)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477102

RESUMEN

The study of chelating ligands is undoubtedly one of the most significant fields of research in chemistry. The present work is directed to the synthesis of new functionalized derivatives of tripodal C-scorpionate compounds. Tris-2,2,2-(1-pyrazolyl)ethanol, HOCH2C(pz)3 (1), one of the most important derivatives of hydrotris(pyrazolyl)methane, was used as a building block for the synthesis of new functionalized C-scorpionates, aiming to expand the scope of this unexplored class of compounds. The first dendritic C-scorpionate was successfully prepared and used in the important industrial catalytic reactions, Sonogashira and Heck C-C cross-couplings.


Asunto(s)
Dendrímeros/química , Metano/química , Compuestos Orgánicos/química , Catálisis , Ligandos , Estructura Molecular
15.
Microb Pathog ; 109: 120-130, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28546116

RESUMEN

A series of heteroleptic metal(II) complexes of formulation [M(Tm)(diimine)](ClO4) (1-8), [Tm = hydrotris(methimazolyl)borate, diimine = 2,2'-bipyridyl or 1,10-phenanthroline and M = Mn(II), Ni(II), Cu(II) or Zn(II)] have been synthesized and characterized by spectroscopic methods. The geometric parameters of the complexes were determined using UV-Vis spectroscopy and DFT calculations. The analyses of HOMO and LUMO have been used to explain the charge transfer within the molecule. Antimicrobial activity of the synthesized heteroleptic complexes were evaluated against two Gram (-ve) (Escherichia coli and Klebsiella pneumoniae) and two Gram (+ve) (Bacillus cereus and Staphylococcus aureus) bacterial, and three fungal (Candida albicans, Candida glabrata and Candida krusei) strains with respect to the standard drugs erythromycin and amphotericin-B. The copper(II) complex 6 showed better scavenging activity against DPPH when compared to other complexes. The cytotoxic activity of copper(II) complexes 5 and 6 against MCF-7 cell line was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. In the molecular docking studies, the complexes showed π-π, σ-π, hydrogen bonding, van der Waals and electrostatic interactions with FGFR kinase receptor.


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Boratos/química , Complejos de Coordinación/química , Metales/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cobre/química , Hongos/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Simulación del Acoplamiento Molecular , Níquel/química , Análisis Espectral
16.
Chemistry ; 22(38): 13715-23, 2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27535720

RESUMEN

The reaction between the bis(ethylene) complex [TpRh(C2 H4 )2 ], 1, (Tp=hydrotris(pyrazolyl)borate), and dimethyl acetylenedicarboxylate (DMAD) has been studied under different experimental conditions. A mixture of products was formed, in which TpRh(I) species were prevalent, whereas the presence of trapping agents, like water or acetonitrile, allowed for the stabilization and isolation of octahedral TpRh(III) compounds. An excess of DMAD gave rise to a small amount of the [2+2+2] cyclotrimerization product hexamethyl mellitate (6). Although no catalytic application of 1 was achieved, mechanistic insights shed light on the formation of stable rhodium species representing the resting state of the catalytic cycle of rhodium-mediated [2+2+2] cyclo(co)trimerization reactions. Metallacyclopentene intermediate species, generated from the activation of one alkyne and one ethylene molecule from 1, and metallacyclopentadiene species, formed by oxidative coupling of two alkynes to the rhodium centre, are crucial steps in the pathways leading to the final organometallic and organic products.

17.
Eur J Inorg Chem ; 2016(15-16): 2413-2423, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28713219

RESUMEN

Six-coordinate MnIII complexes are typically high-spin (S = 2), however, the scorpionate ligand, both in its traditional, hydridotris(pyrazolyl)borate form, Tp- and Tp*- (the latter with 3,5-dimethylpyrazole substituents) and in an aryltris(carbene)borate (i.e., N-heterocyclic carbene, NHC) form, [Ph(MeIm)3B]-, (MeIm = 3-methylimidazole) lead to formation of bis(scorpionate) complexes of MnIII with spin triplet ground states; three of which were investigated herein: [Tp2Mn]SbF6 (1SBF6), [Tp*2Mn]SbF6 (2SBF6), and [{Ph(MeIm)3B}2Mn]CF3SO3 (3CF3SO3). These trigonally symmetric complexes were studied experimentally by magnetic circular dichroism (MCD) spectroscopy (the propensity of 3 to oxidize to MnIV precluded collection of useful MCD data) including variable temperatures and fields (VTVH-MCD) and computationally by ab initio CASSCF/NEVPT2 methods. These combined experimental and theoretical techniques establish the 3A2g electronic ground state for the three complexes, and provide information on the energy of the "conventional" high-spin excited state (5Eg) and other, triplet excited states. These results show the electronic effect of pyrazole ring substituents in comparing 1 and 2. The tunability of the scorpionate ligand, even by perhaps the simplest change (from pyrazole in 1 to 3,5-dimethylpyrazole in 2) is quantitatively manifested through perturbations in ligand-field excited-state energies that impact ground-state zero-field splittings. The comparison with the NHC donor is much more dramatic. In 3, the stronger σ-donor properties of the NHC lead to a quantitatively different electronic structure, so that the lowest lying spin triplet excited state, 3Eg, is much closer in energy to the ground state than in 1 or 2. The zero-field splitting (zfs) parameters of the three complexes were calculated and in the case of 1 and 2 compare closely to experiment (lower by < 10%, < 2 cm-1 in absolute terms); for 3 the large magnitude zfs is reproduced, although there is ambiguity about its sign. The comprehensive picture obtained for these bis(scorpionate) MnIII complexes provides quantitative insight into the role played by the scorpionate ligand in stabilizing unusual electronic structures.

18.
Chemistry ; 21(9): 3716-26, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25591004

RESUMEN

In this work we have analyzed in detail the magnetic anisotropy in a series of hydrotris(pyrazolyl)borate (Tp(-)) metal complexes, namely [VTpCl](+), [CrTpCl](+), [MnTpCl](+), [FeTpCl], [CoTpCl], and [NiTpCl], and their substituted methyl and tert-butyl analogues with the goal of observing the effect of the ligand field on the magnetic properties. In the [VTpCl](+), [CrTpCl](+), [CoTpCl], and [NiTpCl] complexes, the magnetic anisotropy arises as a consequence of out-of-state spin-orbit coupling, and covalent changes induced by the substitution of hydrogen atoms on the pyrazolyl rings does not lead to drastic changes in the magnetic anisotropy. On the other hand, much larger magnetic anisotropies were predicted in complexes displaying a degenerate ground state, namely [MnTpCl](+) and [FeTpCl], due to in-state spin-orbit coupling. The anisotropy in these systems was shown to be very sensitive to perturbations, for example, chemical substitution and distortions due to the Jahn-Teller effect. We found that by substituting the hydrogen atoms in [MnTpCl](+) and [FeTpCl] by methyl and tert-butyl groups, certain covalent contributions to the magnetic anisotropy energy (MAE) could be controlled, thereby achieving higher values. Moreover, we showed that the selection of ion has important consequences for the symmetry of the ground spin-orbit term, opening the possibility of achieving zero magnetic tunneling even in non-Kramers ions. We have also shown that substitution may also contribute to a quenching of the Jahn-Teller effect, which could significantly reduce the magnetic anisotropy of the complexes studied.

19.
Angew Chem Int Ed Engl ; 54(26): 7488-90, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26031741

RESUMEN

With scorpionate ligands finding their way into organonickel chemistry, the state of the art of present-day nickel(IV) chemistry is highlighted. Will rapid CX coupling reactions emerge as a domain of higher-oxidation-state nickel chemistry?

20.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 9): o1047-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25309218

RESUMEN

The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA