Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 201, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135052

RESUMEN

BACKGROUND: Gender is a significant risk factor for late-onset Alzheimer's disease (AD), often attributed to the decline of estrogen. The plant estrogen secoisolariciresinol diglucoside (SDG) has demonstrated anti-inflammatory and neuroprotective effects. However, the protective effects and mechanisms of SDG in female AD remain unclear. METHODS: Ten-month-old female APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with SDG to assess its potential ameliorative effects on cognitive impairments in a female AD model through a series of behavioral and biochemical experiments. Serum levels of gut microbial metabolites enterodiol (END) and enterolactone (ENL) were quantified using HPLC-MS. Correlation analysis and broad-spectrum antibiotic cocktail (ABx) treatment were employed to demonstrate the involvement of END and ENL in SDG's cognitive improvement effects in female APP/PS1 mice. Additionally, an acute neuroinflammation model was constructed in three-month-old C57BL/6J mice treated with lipopolysaccharide (LPS) and subjected to i.c.v. injection of G15, an inhibitor of G protein-coupled estrogen receptor (GPER), to investigate the mediating role of the estrogen receptor GPER in the cognitive benefits conferred by SDG. RESULTS: SDG administration resulted in significant improvements in spatial, recognition, and working memory in female APP/PS1 mice. Neuroprotective effects were observed, including enhanced expression of CREB/BDNF and PSD-95, reduced ß-amyloid (Aß) deposition, and decreased levels of TNF-α, IL-6, and IL-10. SDG also altered gut microbiota composition, increasing serum levels of END and ENL. Correlation analysis indicated significant associations between END, ENL, cognitive performance, hippocampal Aß-related protein mRNA expression, and cortical neuroinflammatory cytokine levels. The removal of gut microbiota inhibited END and ENL production and eliminated the neuroprotective effects of SDG. Furthermore, GPER was found to mediate the inhibitory effects of SDG on neuroinflammatory responses. CONCLUSION: These findings suggest that SDG promotes the production of gut microbial metabolites END and ENL, which inhibit cerebral ß-amyloid deposition, activate GPER to enhance CREB/BDNF signaling pathways, and suppress neuroinflammatory responses. Consequently, SDG exerts neuroprotective effects and ameliorates cognitive impairments associated with AD in female mice.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Butileno Glicoles , Disfunción Cognitiva , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Microbioma Gastrointestinal , Glucósidos , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Animales , Femenino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Butileno Glicoles/farmacología , Butileno Glicoles/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
2.
J Sci Food Agric ; 104(10): 5869-5881, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407005

RESUMEN

BACKGROUND: Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with ß-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS: LAB strains with good ß-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing ß-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION: Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated ß-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.


Asunto(s)
Biotransformación , Fermentación , Lino , Lignanos , beta-Glucosidasa , Lignanos/metabolismo , Lignanos/química , Lino/química , Lino/metabolismo , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología , Proteínas Bacterianas/metabolismo , Butileno Glicoles/metabolismo , Catálisis , Glucósidos
3.
J Clin Biochem Nutr ; 74(3): 261-266, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799144

RESUMEN

Borderline low-density lipoprotein cholesterol levels (120-139 mg/dl) increase the risk of cardiovascular disease. Therefore, the use of functional dietary nutrients is expected to control blood low-density lipoprotein cholesterol levels. This study aimed to evaluate the effect of dietary secoisolariciresinol diglucoside on blood cholesterol in healthy adults with borderline low-density lipoprotein cholesterol levels. A randomized, parallel, controlled, double-blinded clinical trial was performed for participants with borderline low-density lipoprotein cholesterol levels, for 12 weeks with secoisolariciresinol diglucoside (60 mg/day) or placebo. Lipid profile [low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio, total cholesterol, and triglycerides] and liver disease risk markers were measured at weeks 0, 4, 8, and 12. Analyzing 36 participants in each group revealed a significant interaction between treatment and time, indicating reduced low-density lipoprotein cholesterol (p = 0.049) and total cholesterol (p = 0.020) levels in secoisolariciresinol diglucoside-receiving men but not women. However, no significant differences were observed in other markers regardless of gender. The results suggest that a daily intake of 60 mg of secoisolariciresinol diglucoside lowers low-density lipoprotein cholesterol and total cholesterol levels in men with borderline low-density lipoprotein cholesterol, proposing secoisolariciresinol diglucoside potential as a functional dietary nutrient for cardiovascular disease prevention. This study was registered in the UMIN-CTR database (UMIN000046202).

4.
Plant Foods Hum Nutr ; 79(1): 159-165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38236453

RESUMEN

Linseed represents a rich source of nutritional, functional and health-beneficial compounds. Nevertheless, the chemical composition and content of bioactive compounds may be quite variable and potentially affected by various factors, including genotype and the environment. In this study, the proximate chemical composition, lignans content and antioxidant potential of six experimentally grown linseed cultivars were assessed and compared. A diagonal cultivation trial in the University of South Bohemia Experimental Station in Ceské Budejovice, Czech Republic, was established in three subsequent growing seasons (2018, 2019 and 2020). The results showed that the cultivar and growing conditions influenced most studied parameters. The lack of precipitation in May and June 2019 negatively affected the seed yield and the level of secoisolariciresinol diglucoside but did not decrease the crude protein content, which was negatively related to the oil content. The newly developed method for lignans analysis allowed the identification and quantification of secoisolariciresinol diglucoside and matairesinol. Their content correlated positively with the total polyphenol content and antioxidant assays (DPPH and ABTS radical scavenging activity), indicating the significant contribution to the biofunctional properties of linseed. On the other hand, we did not detect minor linseed lignans, pinoresinol and lariciresinol. The results of this study showed the importance of cultivar and growing conditions factors on the linseed chemical composition and the lignans content, determining its nutritional and medicinal properties.


Asunto(s)
Lino , Glucósidos , Lignanos , Antioxidantes/análisis , Butileno Glicoles/análisis , Butileno Glicoles/química , Butileno Glicoles/metabolismo , Lino/química , Lignanos/análisis , Lignanos/química , Lignanos/metabolismo
5.
Crit Rev Food Sci Nutr ; 63(29): 9843-9858, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35532015

RESUMEN

Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.


Asunto(s)
Lino , Proteínas HMGA , Hiperlipidemias , Lignanos , Animales , Humanos , Lino/metabolismo , Lípidos , Triglicéridos/metabolismo , Colesterol/metabolismo , Polímeros/metabolismo , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(7): 967-978, 2023 Jul 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37724399

RESUMEN

OBJECTIVES: Trans-fatty acids (TFAs), primarily derived from the food industry's production processes, have become a globally recognized public health issue due to the detrimental impact they have on human well-being. Secoisolariciresinol diglucoside (SDG) is a polyphenolic compound derived from flax lignans, possessing antioxidative properties. This study aims to investigate the protective effect of SDG on kidney oxidative damage in offspring of mice caused by maternal exposure to TFA during pregnancy and lactation. METHODS: A total of 30 c57BL/6 female rats were randomly divided into 5 groups: a control group, a TFA-exposed group, a low-(TFA+LSDG) group, a medium-(TFA+MSDG) group, and a high-(TFA+HSDG) group (n=6 in each group). With the exception of the control group, the maternal mice in the remaining 4 groups received a daily oral gavage of TFA at a dosage of 60 mg/(kg·BW) throughout the experimental period. The mothers in the control group were administered physiological saline via oral gavage once daily. Meanwhile, the 3 SDG intervention groups were provided with ad libitum access to SDG feed containing 10 mg/kg (low), 20 mg/kg (medium), and 30 mg/kg (high) of SDG. The female mice were conceived overnight. If the vaginal plug appeared in the next morning, the female mice were conceived and included in the experimental stage until the end of the 21th day lactation period. The body weight and kidney mass of offspring were recorded, and the kidney coefficient was calculated. The kidney was detected by HE staining to observe the histopathological changes, and the level of reactive oxidative species (ROS) was detected by fluorescence probe-dihydroethidium (DHE) staining; the expression levels of total superoxide dismutase (T-SOD) and malondialdehyde (MDA) in renal homogenate were detected, and the expression of nuclear factor E2-related fator2 (Nrf2) and hemeoxygenase-1 (HO-1) protein was analyzed by immunohistochemistry (IHC) staining. The mRNA expressions of Nrf2 and HO-1 were detected by real-time PCR, and the protein expression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase-1 (GPx-1), Nrf2 and HO-1 were detected by Western blotting. RESULTS: Compared with the control group, the kidney coefficient in the TFA-exposed group was increased, the morphology and structure of kidney tissue was abnormal; the activity of T-SOD enzyme was decreased, and the content of MDA was increased, the level of ROS was increased; the expressions of Cu/Zn-SOD, Mn-SOD, GPx1 protein were decreased, and the mRNA and protein expressions of Nrf2 and HO-1 were decreased, there were all significant difference (all P<0.05). Compared with the TFA-exposed group, the ROS levels were reduced, and the T-SOD enzyme activity as well as the protein expression of Cu/Zn-SOD, GPx-1, Mn-SOD, Nrf2 and HO-1 were up-regulated in the low, middle and high dose SDG intervention groups; the kidney coefficient and MDA content were decreased in the middle and high dose SDG groups; the Nrf2 mRNA expression in the high dose SDG group was up-regulated, there were all significant difference (all P<0.05). CONCLUSIONS: Maternal exposure to TFA during pregnancy and lactation can lead to oxidative damage in the kidney of offspring, and the SDG intervention may alleviate TFA-induced oxidative damage by up-regulating the expression of Nrf2 and HO-1 signal pathway.


Asunto(s)
3,4-Metilenodioxianfetamina , Ácidos Grasos trans , Humanos , Embarazo , Femenino , Ratones , Ratas , Animales , Ácidos Grasos trans/toxicidad , Exposición Materna , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Riñón , Superóxido Dismutasa , Estrés Oxidativo
7.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36448088

RESUMEN

Lignan is a class of diphenolic compounds that arise from the condensation of two phenylpropanoid moieties. Oilseed and cereal crops (e.g., flaxseed, sesame seed, wheat, barley, oats, rye, etc.) are major sources of plant lignan. Methods for commercial isolation of the lignan secoisolariciresinol diglucoside (SDG) are not well reported, as most publications describing the detection, extraction, and enrichment of SDG use methods that have not been optimized for commercial scale lignan recovery. Simply scaling up laboratory methods would require expensive infrastructure to achieve a marketable yield and reproducible product quality. Therefore, establishing standard protocols to produce SDG and its derivatives on an industrial scale is critical to decrease lignan cost and increase market opportunities. This review summarizes the human health benefits of flaxseed lignan consumption, lignan physicochemical properties, and mammalian lignan metabolism, and describes methods for detecting, extracting, and enriching flaxseed lignan. Refining and optimization of these methods could lead to the development of inexpensive lignan sources for application as an ingredient in medicines, dietary supplements, and other healthy ingredients.

8.
Drug Dev Res ; 83(5): 1152-1166, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35472101

RESUMEN

Secoisolariciresinol diglucoside (SDG) is the main component of lignans with various biological activities, including anticancer activity. However, whether SDG has obvious anticancer effects on colorectal cancer (CRC) is unclear. Pyroptosis, a form of programmed cell death, has received increasing attention in cancer-related research. In this study, we aimed to test the anticancer properties and relatecd functional mechanisms of SDG. we found that SDG not only inhibited the cell viability of HCT116 cells, but also induced HCT116 cells to swell with apparent large bubbles, which are typical signs of pyroptosis. Furthermore, SDG induced cell pyroptosis by enhancing cleavage of the N-terminal fragment of gasdermin D (GSDMD) in CRC cells, accompanied by increased caspase-1 cleavage. Consistent with this, SDG-induced GSDMD-N-terminal fragment cleavage and pyroptosis were reduced by siRNA-mediated silencing of caspase-1 or treatment with the specific caspase-1 inhibitor VX-765 treatment, suggesting that active caspase-1 further induces pyroptosis. A mechanistic study showed that SDG induced reactive oxygen species (ROS) accumulation and inhibits phosphatidylinositol 3-kinase (PI3K) phosphorylation and increases pyroptosis, while increasing GSDMD and caspase-1 cleavage and enhancing expression of BCL2-associated X (BAX), which could be rescued by the ROS scavenger (NAC), suggesting that SDG-induced GSDME-dependent pyroptosis is related to the ROS/PI3K/AKT/BAX-mitochondrial apoptotic pathway. In vivo results showed that SDG significantly inhibited tumor growth and induced pyroptosis in the HCT116-CRC nude mouse model. In conclusion, our findings suggest that the anticancer activity of SDG in CRC is associated with the induction of GSDMD-dependent pyroptosis by SDG through the generation of ROS/P13K/AKT/BAK-mitochondrail apoptosis pathway, providing insights into SDG in its potential new application in cancer treatment.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptosis , Animales , Butileno Glicoles , Caspasa 1/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Glucósidos , Células HCT116 , Humanos , Ratones , Proteínas de Unión a Fosfato/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2
9.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077483

RESUMEN

Although alveolar macrophages play a critical role in malignant transformation of mesothelial cells following asbestos exposure, inflammatory and oxidative processes continue to occur in the mesothelial cells lining the pleura that may contribute to the carcinogenic process. Malignant transformation of mesothelial cells following asbestos exposure occurs over several decades; however, amelioration of DNA damage, inflammation, and cell injury may impede the carcinogenic process. We have shown in an in vitro model of asbestos-induced macrophage activation that synthetic secoisolariciresinol diglucoside (LGM2605), given preventively, reduced inflammatory cascades and oxidative/nitrosative cell damage. Therefore, it was hypothesized that LGM2605 could also be effective in reducing asbestos-induced activation and the damage of pleural mesothelial cells. LGM2605 treatment (50 µM) of huma n pleural mesothelial cells was initiated 4 h prior to exposure to asbestos (crocidolite, 20 µg/cm2). Supernatant and cells were evaluated at 0, 2, 4, and 8 h post asbestos exposure for reactive oxygen species (ROS) generation, DNA damage (oxidized guanine), inflammasome activation (caspase-1 activity) and associated pro-inflammatory cytokine release (IL-1ß, IL-18, IL-6, TNFα, and HMGB1), and markers of oxidative stress (malondialdehyde (MDA) and 8-iso-prostaglandin F2a (8-iso-PGF2α). Asbestos induced a time-dependent ROS increase that was significantly (p < 0.0001) reduced (29.4%) by LGM2605 treatment. LGM2605 pretreatment also reduced levels of asbestos-induced DNA damage by 73.6% ± 1.0%. Although levels of inflammasome-activated cytokines, IL-1ß and IL-18, reached 29.2 pg/mL ± 0.7 pg/mL and 43.9 pg/mL ± 0.8 pg/mL, respectively, LGM2605 treatment significantly (p < 0.0001) reduced cytokine levels comparable to baseline (non-asbestos exposed) values (3.8 pg/mL ± 0.2 pg/mL and 5.4 pg/mL ± 0.2 pg/mL, respectively). Furthermore, levels of IL-6 and TNFα in asbestos-exposed mesothelial cells were high (289.1 pg/mL ± 2.9 pg/mL and 511.3 pg/mL ± 10.2 pg/mL, respectively), while remaining undetectable with LGM2605 pretreatment. HMGB1 (a key inflammatory mediator and initiator of malignant transformation) release was reduced 75.3% ± 0.4% by LGM2605. Levels of MDA and 8-iso-PGF2α, markers of oxidative cell injury, were significantly (p < 0.001) reduced by 80.5% ± 0.1% and 76.6% ± 0.3%, respectively. LGM2605, given preventively, reduced ROS generation, DNA damage, and inflammasome-activated cytokine release and key inflammatory mediators implicated in asbestos-induced malignant transformation of normal mesothelial cells.


Asunto(s)
Amianto , Proteína HMGB1 , Amianto/toxicidad , Butileno Glicoles , Citocinas , Daño del ADN , Glucósidos , Humanos , Inflamasomas , Inflamación/patología , Inflamación/prevención & control , Interleucina-18 , Interleucina-6 , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa
10.
Crit Rev Food Sci Nutr ; 61(16): 2719-2741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32619358

RESUMEN

Lignans are complex diphenolic compounds representing phytoestrogens and occur widely across the plant kingdom. Formed by the coupling of two coniferyl alcohol residues, lignans constitute major plant "specialized metabolites" with exceptional biological attributes that aid in plant defence and provide health benefits in humans by reducing the risk of ailments such as cancer, diabetes etc. Linseed (Linum usitatissimum L.) is one of the richest sources of lignans followed by cereals and legumes. Among the various types of lignans, secoisolariciresinol diglucoside (SDG) is considered as the essential and nutrient rich lignan in linseed. Lignans exhibit established antimitotic, antiviral and anti-tumor properties that contribute to their medicinal value. The present review seeks to provide a holistic view of research in the past and present times revolving around lignans from linseed and its allied species. This review attempts to elucidate sources, structures and functional properties of lignans, along with detailed biosynthetic mechanisms operating in plants. It summarizes various methods for the determination of lignan content in plants. Biotechnological interventions (in planta and in vitro) aimed at enriching lignan content and adoption of integrative approaches that might further enhance lignan content and medicinal and nutraceutical value of Linum spp. have also been discussed.


Asunto(s)
Lino , Lignanos , Grano Comestible/química , Humanos , Lignanos/análisis , Aceite de Linaza , Verduras
11.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681644

RESUMEN

Exposure to Libby amphibole (LA) asbestos-like fibers is associated with increased risk of asbestosis, mesothelioma, pulmonary disease, and systemic autoimmune disease. LGM2605 is a small molecule antioxidant and free radical scavenger, with anti-inflammatory effects in various disease models. The current study aimed to determine whether the protective effects of LGM2605 persist during the late inflammatory phase post-LA exposure. Male and female C57BL/6 mice were administered daily LGM2605 (100 mg/kg) via gel cups for 3 days before and 14 days after a 200 µg LA given via intraperitoneal (i.p.) injection. Control mice were given unsupplemented gel cups and an equivalent dose of i.p. saline. On day 14 post-LA treatment, peritoneal lavage was assessed for immune cell influx, cytokine concentrations, oxidative stress biomarkers, and immunoglobulins. During the late inflammatory phase post-LA exposure, we noted an alteration in trafficking of both innate and adaptive immune cells, increased pro-inflammatory cytokine concentrations, induction of immunoglobulin isotype switching, and increased oxidized guanine species. LGM2605 countered these changes similarly among male and female mice, ameliorating late inflammation and altering immune responses in late post-LA exposure. These data support possible efficacy of LGM2605 in the prolonged treatment of LA-associated disease and other inflammatory conditions.


Asunto(s)
Asbestos Anfíboles/toxicidad , Butileno Glicoles/uso terapéutico , Glucósidos/uso terapéutico , Inflamación/prevención & control , Inmunidad Adaptativa/efectos de los fármacos , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Butileno Glicoles/farmacología , Quimiocina CCL2/metabolismo , Femenino , Glucósidos/farmacología , Inmunidad Innata/efectos de los fármacos , Isotipos de Inmunoglobulinas/metabolismo , Inmunoglobulinas/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Interleucina-6 , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
12.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502389

RESUMEN

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity. Despite advances in nanotoxicology research and the characterization of their toxicity, the exact mechanism(s) of toxicity are yet to be defined. We identified chlorination toxicity as a damaging consequence of inflammation and myeloperoxidase (MPO) activation, resulting in macromolecular damage and cell damage/death. We hypothesized that the inhalation of CuO-NPs elicits an inflammatory response resulting in chlorination damage in cells and lung tissues. We further tested the protective action of LGM2605, a synthetic small molecule with known scavenging properties for reactive oxygen species (ROS), but most importantly, for active chlorine species (ACS) and an inhibitor of MPO. CuO-NPs (15 µg/bolus) were instilled intranasally in mice and the kinetics of the inflammatory response in lungs was evaluated 1, 3, and 7 days later. Evaluation of the protective action of LGM2605 was performed at 24 h post-challenge, which was selected as the peak acute inflammatory response to CuO-NP. LGM2605 was given daily via gavage to mice starting 2 days prior to the time of the insult (100 mg/kg). CuO-NPs induced a significant inflammatory influx, inflammasome-relevant cytokine release, and chlorination damage in mouse lungs, which was mitigated by the action of LGM2605. Preventive action of LGM2605 ameliorated the adverse effects of CuO-NP in lung.


Asunto(s)
Butileno Glicoles/farmacología , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Animales , Líquido del Lavado Bronquioalveolar/citología , Butileno Glicoles/metabolismo , Cloro/metabolismo , Cobre/metabolismo , Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Femenino , Glucósidos/metabolismo , Inflamasomas/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Óxidos/farmacología , Peroxidasa/farmacología , Especies Reactivas de Oxígeno/farmacología
13.
Pharmacol Res ; 158: 104852, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32438038

RESUMEN

Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Butileno Glicoles/farmacología , Glucósidos/farmacología , Fitoestrógenos/farmacología , Transducción de Señal/efectos de los fármacos , Termogénesis/efectos de los fármacos , Células 3T3-L1 , Adipocitos Marrones/efectos de los fármacos , Animales , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Biogénesis de Organelos
14.
Breast Cancer Res Treat ; 173(3): 545-557, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30367332

RESUMEN

PURPOSE: Exposure to the polyphenolic plant lignan secoisolariciresinol diglucoside (SDG) and its metabolite enterolactone (ENL) has been associated with reduced breast cancer progression, particularly for estrogen receptor alpha (ERα)-negative disease, and decreased preclinical mammary tumor growth. However, while preclinical studies have established that SDG and ENL affect measures of progression in models of triple-negative breast cancer (TNBC, a subset of ERα-negative disease), the molecular mechanisms underlying these effects remain unclear. METHODS: C57BL/6 mice were fed a control diet (control, 10% kcal from fat) or control diet + SDG (SDG, 100 mg/kg diet) for 8 weeks, then orthotopically injected with syngeneic E0771 mammary tumor cells (a model of TNBC); tumor growth was monitored for 3 weeks. The role of reduced NF-κB signaling in SDG's anti-tumor effects was explored in vitro via treatment with the bioactive SDG metabolite ENL. In addition to the murine E0771 cells, the in vitro studies utilized MDA-MB-231 and MCF-7 cells, two human cell lines which model the triple-negative and luminal A breast cancer subtypes, respectively. RESULTS: SDG supplementation in the mice significantly reduced tumor volume and expression of phospho-p65 and NF-κB target genes (P < 0.05). Markers of macrophage infiltration were decreased in the distal-to-tumor mammary fat pad of mice supplemented with SDG relative to control mice (P < 0.05). In vitro, ENL treatment inhibited viability, survival, and NF-κB activity and target gene expression in E0771, MDA-MB-231, and MCF-7 cells (P < 0.05). Overexpression of Rela attenuated ENL's inhibition of E0771 cell viability and survival. CONCLUSIONS: SDG reduces tumor growth in the E0771 model of TNBC, likely via a mechanism involving inhibition of NF-κB activity. SDG could serve as a practical and effective adjuvant treatment to reduce recurrence, but greater understanding of its effects is needed to inform the development of more targeted recommendations for its use.


Asunto(s)
Antiinflamatorios/farmacología , Butileno Glicoles/farmacología , Lino/química , Glucósidos/farmacología , Neoplasias Mamarias Animales/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/sangre , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/química , Biomarcadores , Butileno Glicoles/administración & dosificación , Butileno Glicoles/química , Línea Celular Tumoral , Supervivencia Celular , Citocinas/sangre , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Perfilación de la Expresión Génica , Glucósidos/administración & dosificación , Glucósidos/química , Inmunohistoquímica , Lignanos/sangre , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Ratones
15.
Toxicol Appl Pharmacol ; 375: 81-93, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31022494

RESUMEN

BACKGROUND: Exposure to the Libby amphibole (LA) asbestos-like fibers found in Libby, Montana, is associated with inflammatory responses in mice and humans, and an increased risk of developing mesothelioma, asbestosis, pleural disease, and systemic autoimmune disease. Flaxseed-derived secoisolariciresinol diglucoside (SDG) has anti-inflammatory, anti-fibrotic, and antioxidant properties. We have previously identified potent protective properties of SDG against crocidolite asbestos exposure modeled in mice. The current studies aimed to extend those findings by evaluating the immunomodulatory effects of synthetic SDG (LGM2605) on LA-exposed mice. METHODS: Male and female C57BL/6 mice were given LGM2605 via gavage initiated 3 days prior to and continued for 3 days after a single intraperitoneal dose of LA fibers (200 µg) and evaluated on day 3 for inflammatory cell influx in the peritoneal cavity using flow cytometry. RESULTS: LA exposure induced a significant increase (p < 0.0001) in spleen weight and peritoneal influx of white blood cells, all of which were reduced with LGM2605 with similar trends among males and females. Levels of peritoneal PMN cells were significantly (p < 0.0001) elevated post LA exposure, and were significantly (p < 0.0001) blunted by LGM2605. Importantly, LGM2605 significantly ameliorated the LA-induced mobilization of peritoneal B1a B cells. CONCLUSIONS: LGM2605 reduced LA-induced acute inflammation and WBC trafficking supporting its possible use in mitigating downstream LA fiber-associated diseases. SUMMARY: Following acute exposure to Libby amphibole (LA) asbestos-like fibers, synthetic SDG (LGM2605), a small synthetic molecule, significantly reduced the LA-induced increase in spleen weight and peritoneal inflammation in C57BL/6 male and female mice. Our findings highlight that LGM2605 has immunomodulatory properties and may, thus, likely be a chemopreventive agent for LA-induced diseases.


Asunto(s)
Asbestos Anfíboles/toxicidad , Butileno Glicoles/farmacología , Glucósidos/farmacología , Inflamación/inducido químicamente , Inflamación/prevención & control , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Peritoneo/efectos de los fármacos , Peritoneo/patología , Bazo/efectos de los fármacos , Bazo/patología
16.
Pharmacol Res ; 142: 176-191, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30818043

RESUMEN

As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Medicina Tradicional China , Animales , Humanos
17.
Mol Biol Rep ; 46(6): 6171-6179, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31493285

RESUMEN

The toxicity of heavy metals such as mercury (Hg) in humans and animals is well documented. The kidney is the primary deposition site of inorganic-Hg and target organ of its toxicity. The present study investigated the protective efficacy of flaxseed lignan-Secoisolariciresinol diglucoside (SDG) on nephrotoxicity induced by mercuric chloride (HgCl2). Rats were intraperitoneally injected with HgCl2 (2 mg/kg/day) and renal toxicity was induced. Subcutaneous administration of rats with SDG (5 mg/kg/day) as a pre-treatment caused a significant reversal of HgCl2 induced increase in blood urea, creatinine, glutathione s-transferase and catalase (CAT). On the other hand, administration of SDG with HgCl2 restored normal levels of albumin and superoxide dismutase (SOD). Histological examination of kidneys confirmed that pre-treatment of SDG before HgCl2 administration significantly reduced its pathological effects. Thus, the results of the present investigation suggest that SDG can significantly reduce renal damage, serum and tissue biochemical profiles caused by HgCl2 induced nephrotoxicity. Hence, SDG may be recommended for clinical trials in the treatment of kidney disorders caused by exposure to Hg.


Asunto(s)
Butileno Glicoles/farmacología , Lino/química , Glucósidos/farmacología , Riñón/efectos de los fármacos , Lignanos/farmacología , Cloruro de Mercurio/toxicidad , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Antioxidantes/metabolismo , Biomarcadores , Butileno Glicoles/química , Cromatografía Líquida de Alta Presión , Glucósidos/química , Glutatión Transferasa/metabolismo , Riñón/metabolismo , Riñón/patología , Lignanos/química , Masculino , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Sustancias Protectoras/química , Ratas
18.
Int J Mol Sci ; 20(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30621290

RESUMEN

Updated measurements of charged particle fluxes during the transit from Earth to Mars as well as on site measurements by Curiosity of Martian surface radiation fluxes identified potential health hazards associated with radiation exposure for human space missions. Designing mitigation strategies of radiation risks to astronauts is critical. We investigated radiation-induced endothelial cell damage and its mitigation by LGM2605, a radioprotector with antioxidant and free radical scavenging properties. We used an in vitro model of lung vascular networks (flow-adapted endothelial cells; FAECs), exposed to gamma rays, low/higher linear energy transfer (LET) protons (3⁻4 or 8⁻10 keV/µm, respectively), and mixed field radiation sources (gamma and protons), given at mission-relevant doses (0.25 gray (Gy)⁻1 Gy). We evaluated endothelial inflammatory phenotype, NLRP3 inflammasome activation, and oxidative cell injury. LGM2605 (100 µM) was added 30 min post radiation exposure and gene expression changes evaluated 24 h later. Radiation induced a robust increase in mRNA levels of antioxidant enzymes post 0.25 Gy and 0.5 Gy gamma radiation, which was significantly decreased by LGM2605. Intercellular cell adhesion molecule-1 (ICAM-1) and NOD-like receptor protein 3 (NLRP3) induction by individual or mixed-field exposures were also significantly blunted by LGM2605. We conclude that LGM2605 is a likely candidate to reduce tissue damage from space-relevant radiation exposure.


Asunto(s)
Butileno Glicoles/farmacología , Rayos gamma , Glucósidos/farmacología , Inflamasomas/metabolismo , Pulmón/irrigación sanguínea , Pulmón/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Protectores contra Radiación/farmacología , Animales , Antioxidantes/farmacología , Humanos , Inflamación/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Transferencia Lineal de Energía , Pulmón/efectos de los fármacos , Pulmón/efectos de la radiación , Fenotipo , Protones
19.
J Sci Food Agric ; 99(2): 831-843, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29999194

RESUMEN

BACKGROUND: Muffins containing 0, 20, and 30 g of flaxseed were developed for a randomized, controlled cross-over trial on low-density lipoprotein (LDL) cholesterol lowering. The effect of milled flaxseed and storage (-20 °C for 1 and 6 months) of banana and cinnamon muffins on sensory attribute intensities, selected physical properties, bioactive concentrations, and acceptability by two groups - clinical trial participants and consumers - was investigated. RESULTS: The addition of flax increased flax aroma and flavor, sour aroma, and cohesiveness of mass and brown color, and decreased sweet aroma and flavor, banana and cinnamon aroma and flavor, springiness and mouth dryness. Alpha-linolenic acid and secoisolariciresinol diglucoside were significantly increased when flax was increased from 20 to 30 g. Clinical trial participants generally found the muffins more acceptable than the consumers. Consumers reported significantly decreased acceptability when flax at any level was added to muffins, with 30 g the least acceptable. CONCLUSIONS: Muffins with 20 g flaxseed generally had higher mean acceptability values compared to muffins with 30 g. Neither flavoring nor storage at -20 °C for 6 months appreciably changed muffin attributes or acceptability. Future work will optimize the ingredients as well as the amount of flax needed to provide the required amount of bioactive to positively affect LDL cholesterol level and to produce acceptable muffins. © 2018 Society of Chemical Industry.


Asunto(s)
Pan/análisis , Cinnamomum zeylanicum/química , Lino/química , Aditivos Alimentarios/análisis , Hipercolesterolemia/dietoterapia , Musa/química , Extractos Vegetales/análisis , Semillas/química , Adolescente , Adulto , Colesterol , Cinnamomum zeylanicum/metabolismo , Comportamiento del Consumidor , Femenino , Lino/metabolismo , Aditivos Alimentarios/metabolismo , Manipulación de Alimentos , Almacenamiento de Alimentos , Humanos , Hipercolesterolemia/metabolismo , Masculino , Musa/metabolismo , Odorantes/análisis , Extractos Vegetales/metabolismo , Gusto , Triticum/química , Triticum/metabolismo , Adulto Joven
20.
Molecules ; 24(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583523

RESUMEN

Lignans are polyphenolic compounds with a wide spectrum of biological functions including antioxidant, anti-inflammatory, and anticarcinogenic activities, therefore, there is an increasing interest in promoting the inclusion of lignan-rich foods in humans' diets. Flaxseed is the richest source of the lignan secoisolariciresinol diglucoside-a compound found in the outer fibrous-containing layers of flax. The rumen appears to be the major site for the conversion of secoisolariciresinol diglucoside to the enterolignans enterodiol and enterolactone, but only enterolactone has been detected in milk of dairy cows fed flaxseed products (whole seeds, hulls, meal). However, there is limited information regarding the ruminal microbiota species involved in the metabolism of secoisolariciresinol diglucoside. Likewise, little is known about how dietary manipulation such as varying the nonstructural carbohydrate profile of rations affects milk enterolactone in dairy cows. Our review covers the gastrointestinal tract metabolism of lignans in humans and animals and presents an in-depth assessment of research that have investigated the impacts of flaxseed products on milk enterolactone concentration and animal health. It also addresses the pharmacokinetics of enterolactone consumed through milk, which may have implications to ruminants and humans' health.


Asunto(s)
4-Butirolactona/análogos & derivados , Alimentación Animal/análisis , Antioxidantes/química , Productos Lácteos/análisis , Lino/química , Lignanos/metabolismo , Leche/química , 4-Butirolactona/química , Animales , Bovinos , Tracto Gastrointestinal/metabolismo , Humanos , Lignanos/química , Lignanos/farmacocinética , Redes y Vías Metabólicas , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA