Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.194
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(9): 1487-1505.e14, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35366417

RESUMEN

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.


Asunto(s)
Vías Biosintéticas , Interacciones Microbiota-Huesped , Microbiota , Biología Sintética/métodos , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Ingeniería Genética , Humanos , Metabolómica
2.
Proc Natl Acad Sci U S A ; 119(42): e2212930119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215464

RESUMEN

Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.


Asunto(s)
Microbiota , Sideróforos , Antibacterianos , Benzamidas , Humanos , Metabolismo Secundario , Sideróforos/genética , Sideróforos/metabolismo
3.
Genomics ; : 110925, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39178998

RESUMEN

Fungal-plant interactions have persisted for 460 million years, and almost all terrestrial plants on Earth have endophytic fungi. However, the mechanism of symbiosis between endophytic fungi and host plants has been inconclusive. In this dissertation, we used a strain of endophytic Fusarium lateritium (Fl617), which was found in the previous stage to promote disease resistance in tomato, and selected the pathogenic Fusarium oxysporum Fo4287 and endophytic Fusarium oxysporum Fo47, which are in the same host and the closest relatives of Fl617, to carry out a comparative genomics analysis of the three systems and to provide a new perspective for the elucidation of the special lifestyle of the fungal endophytes. We found that endophytic F. lateritium has a smaller genome, fewer clusters and genes associated with pathogenicity, and fewer plant cell wall degrading enzymes (PCWDEs). There were also relatively fewer secondary metabolisms and typical Fusarium spp. toxins, and a lack of the key Fusarium spp. pathogenicity factor, secreted in xylem (SIX), but the endophytic fungi may be more sophisticated in their regulation of the colonization process. It is hypothesized that the endophytic fungi may have maintained their symbiosis with plants due to the relatively homogeneous microenvironment in plants for a long period of time, considering only plant interactions and discarding the relevant pathogenicity factors, and that their endophytic evolutionary tendency may tend to be genome streamlining and to enhance the fineness of the regulation of plant interactions, thus maintaining their symbiotic status with plants.

4.
Mol Plant Microbe Interact ; 37(2): 127-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934016

RESUMEN

The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Factores de Virulencia , Vitis , Factores de Virulencia/genética , Virulencia/genética , Genómica , Vitis/microbiología
5.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281030

RESUMEN

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Asunto(s)
Picea , Humanos , Picea/genética , Picea/metabolismo , Variaciones en el Número de Copia de ADN , beta-Glucosidasa/genética , Genómica , Transcriptoma
6.
BMC Genomics ; 25(1): 714, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048950

RESUMEN

BACKGROUND: Elaeocarpus spp. stem blight, caused by Pseudocryphonectria elaeocarpicola, is a destructive disease, which will significantly reduce the productivity and longevity of Elaeocarpus spp. plants, especially in the Guangdong Province of China. However, few information is available for P. elaeocarpicola. To unravel the potential adaptation mechanism of stem adaptation, the whole genome of P. elaeocarpicola was sequenced by using the DNBSEQ and PacBio platforms. RESULTS: P. elaeocarpicola harbors 44.49 Mb genome with 10,894 predicted coding genes. Genome analysis revealed that the P. elaeocarpicola genome encodes a plethora of pathogenicity-related genes. Analysis of carbohydrate-active enzymes (CAZymes) revealed a rich variety of enzymes participated in plant cell wall degradation, which could effectively degrade cellulose, hemicellulose and xyloglucans in the plant cell wall and promote the invasion of the host plant. There are 213 CAZyme families found in P. elaeocarpicola, among which glycoside hydrolase (GH) family has the largest number, far exceeding other tested fungi by 53%. Besides, P. elaeocarpicola has twice as many genes encoding chitin and cellulose degradation as Cryphonectria parasitica, which belong to the same family. The predicted typical secreted proteins of P. elaeocarpicola are numerous and functional, including many known virulence effector factors, indicating that P. elaeocarpicola has great potential to secrete virulence effectors to promote pathogenicity on host plants. AntiSMASH revealed that the genome encoded 61 secondary metabolic gene clusters including 86 secondary metabolic core genes which was much higher than C. parasitica (49). Among them, two gene cluster of P. elaeocarpicola, cluster12 and cluster52 showed 100% similarity with the mycotoxins synthesis clusters from Aspergillus steynii and Alternaria alternata, respectively. In addition, we annotated cytochrome P450 related enzymes, transporters, and transcription factors in P. elaeocarpicola, which are important virulence determinants of pathogenic fungi. CONCLUSIONS: Taken together, our study represents the first genome assembly for P. elaeocarpicola and reveals the key virulence factors in the pathogenic process of P. elaeocarpicola, which will promote our understanding of its pathogenic mechanism. The acquired knowledge lays a foundation for further exploration of molecular interactions with the host and provide target for management strategies in future research.


Asunto(s)
Ascomicetos , Genoma Fúngico , Enfermedades de las Plantas , Ascomicetos/genética , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Corteza de la Planta/microbiología , Filogenia , Adaptación Fisiológica/genética , Secuenciación Completa del Genoma
7.
Mol Microbiol ; 119(2): 151-160, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349384

RESUMEN

Actinobacteria have a complex life cycle, including morphological and physiological differentiation which are often associated with the biosynthesis of secondary metabolites. Recently, increased interest in post-translational modifications (PTMs) in these Gram-positive bacteria has highlighted the importance of PTMs as signals that provide functional diversity and regulation by modifying proteins to respond to diverse stimuli. Here, we review the developments in research on acylation, a typical PTM that uses acyl-CoA or related metabolites as donors, as well as the understanding of the direct link provided by acylation between cell metabolism and signal transduction, transcriptional regulation, cell growth, and pathogenicity in Actinobacteria.


Asunto(s)
Actinobacteria , Virulencia , Transducción de Señal , Acilación , Proteínas , Procesamiento Proteico-Postraduccional
8.
BMC Plant Biol ; 24(1): 541, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872084

RESUMEN

BACKGROUND: The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS: By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nicotiana , Tricomas , Tricomas/genética , Tricomas/metabolismo , Tricomas/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
BMC Plant Biol ; 24(1): 662, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987668

RESUMEN

BACKGROUND: Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS: The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION: Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.


Asunto(s)
Resistencia a la Sequía , Malva , Beauveria/fisiología , Beauveria/genética , Resistencia a la Sequía/genética , Malva/genética , Malva/metabolismo , Malva/microbiología
10.
Annu Rev Genet ; 50: 371-392, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27732794

RESUMEN

Fungi have the capability to produce a tremendous number of so-called secondary metabolites, which possess a multitude of functions, e.g., communication signals during coexistence with other microorganisms, virulence factors during pathogenic interactions with plants and animals, and in medical applications. Therefore, research on this topic has intensified significantly during the past 10 years and thus knowledge of regulatory mechanisms and the understanding of the role of secondary metabolites have drastically increased. This review aims to depict the complexity of all the regulatory elements involved in controlling the expression of secondary metabolite gene clusters, ranging from epigenetic control and signal transduction pathways to global and specific transcriptional regulators. Furthermore, we give a short overview on the role of secondary metabolites, focusing on the interaction with other microorganisms in the environment as well as on pathogenic relationships.


Asunto(s)
Hongos/metabolismo , Hongos/patogenicidad , Metabolismo Secundario , Animales , Epigénesis Genética , Hongos/genética , Regulación Fúngica de la Expresión Génica , Plantas/microbiología , Transducción de Señal , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
Fungal Genet Biol ; 171: 103865, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246260

RESUMEN

As a prevalent pathogenic fungus, Aspergillus westerdijkiae poses a threat to both food safety and human health. The fungal growth, conidia production and ochratoxin A (OTA) in A. weterdijkiae are regulated by many factors especially transcription factors. In this study, a transcription factor AwSclB in A. westerdijkiae was identified and its function in asexual sporulation and OTA biosynthesis was investigated. In addition, the effect of light control on AwSclB regulation was also tested. The deletion of AwSclB gene could reduce conidia production by down-regulation of conidia genes and increase OTA biosynthesis by up-regulation of cluster genes, regardless under light or dark conditions. It is worth to note that the inhibitory effect of light on OTA biosynthesis was reversed by the knockout of AwSclB gene. The yeast one-hybrid assay indicated that AwSclB could interact with the promoters of BrlA, ConJ and OtaR1 genes. This result suggests that AwSclB in A. westerdijkiae can directly regulate asexual conidia formation by activating the central developmental pathway BrlA-AbaA-WetA through up-regulating the expression of AwBrlA, and promote the light response of the strain by activating ConJ. However, AwSclB itself is unable to respond to light regulation. This finding will deepen our understanding of the molecular regulation of A. westerdijkiae development and secondary metabolism, and provide potential targets for the development of new fungicides.


Asunto(s)
Aspergillus , Factores de Transcripción , Humanos , Metabolismo Secundario/genética , Aspergillus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética
12.
Appl Environ Microbiol ; 90(3): e0220823, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38421174

RESUMEN

Homeobox domain (HD) proteins present a crucial involvement in morphological differentiation and other functions in eukaryotes. Most HD genes encode transcription factors (TFs) that orchestrate a regulatory role in cellular and developmental decisions. In fungi, multiple studies have increased our understanding of these important HD regulators in recent years. These reports have revealed their role in fungal development, both sexual and asexual, as well as their importance in governing other biological processes in these organisms, including secondary metabolism, pathogenicity, and sensitivity to environmental stresses. Here, we provide a comprehensive review of the current knowledge on the regulatory roles of HD-TFs in fungi, with a special focus on Aspergillus species.


Asunto(s)
Genes Homeobox , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Homeodominio/genética , Aspergillus/genética , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas
13.
New Phytol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149848

RESUMEN

Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.

14.
J Exp Bot ; 75(16): 4729-4744, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38767602

RESUMEN

Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time-consuming and labour-intensive. Transcription factor-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB transcription factors and summarizes research progress concerning MYB transcription factors involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB transcription factors regulate multiple synthase genes to mediate the biosynthesis of active compounds. This work will serve as a reference for an in-depth analysis of the MYB transcription factor family in medicinal plants.


Asunto(s)
Proteínas de Plantas , Plantas Medicinales , Factores de Transcripción , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
15.
J Exp Bot ; 75(1): 300-315, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738614

RESUMEN

Aliphatic glucosinolates are a large group of plant secondary metabolites characteristic of Brassicaceae, including the model plant Arabidopsis. The diverse and complex degradation products of aliphatic glucosinolates contribute to plant responses to herbivory, pathogen attack, and environmental stresses. Most of the biosynthesis genes in the aliphatic glucosinolate pathway have been cloned in Arabidopsis, and the research focus has recently shifted to the regulatory mechanisms controlling aliphatic glucosinolate accumulation. Up till now, more than 40 transcriptional regulators have been identified as regulating the aliphatic glucosinolate pathway, but many more novel regulators likely remain to be discovered based on research evidence over the past decade. In the current study, we took a systemic approach to functionally test 155 candidate transcription factors in Arabidopsis identified by yeast one-hybrid assay, and successfully validated at least 30 novel regulators that could significantly influence the accumulation of aliphatic glucosinolates in our experimental set-up. We also showed that the regulators of the aliphatic glucosinolate pathway have balanced positive and negative effects, and glucosinolate metabolism and plant development can be coordinated. Our work is the largest scale effort so far to validate transcriptional regulators of a plant secondary metabolism pathway, and provides new insights into how the highly diverse plant secondary metabolism is regulated at the transcriptional level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37975812

RESUMEN

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Asunto(s)
Ácido Abscísico , Bixaceae , Extractos Vegetales , Bixaceae/genética , Bixaceae/metabolismo , Ácido Abscísico/metabolismo , Proteómica , Fitomejoramiento , Carotenoides/metabolismo
17.
Metabolomics ; 20(5): 90, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095664

RESUMEN

INTRODUCTION: Fungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. OBJECTIVES: To prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. METHODS: The 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. RESULTS: We isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated-Omics datasets. CONCLUSIONS: This work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery.


Asunto(s)
Vías Biosintéticas , Hongos , Metabolómica , Familia de Multigenes , Humanos , Metabolómica/métodos , Hongos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo
18.
Chemistry ; 30(28): e202400271, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456538

RESUMEN

Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.


Asunto(s)
Vías Biosintéticas , Familia de Multigenes , Serina , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina/química , Serina/biosíntesis , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Aminobutiratos/química , Aminobutiratos/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-38240740

RESUMEN

This study describes two Gram-negative, flexirubin-producing, biofilm-forming, motile-by-gliding and rod-shaped bacteria, isolated from the marine sponges Ircinia variabilis and Sarcotragus spinosulus collected off the coast of Algarve, Portugal. Both strains, designated Aq135T and Aq349T, were classified into the genus Aquimarina by means of 16S rRNA gene sequencing. We then performed phylogenetic, phylogenomic and biochemical analyses to determine whether these strains represent novel Aquimarina species. Whereas the closest 16S rRNA gene relatives to strain Aq135T were Aquimarina macrocephali JAMB N27T (97.8 %) and Aquimarina sediminis w01T (97.1 %), strain Aq349T was more closely related to Aquimarina megaterium XH134T (99.2 %) and Aquimarina atlantica 22II-S11-z7T (98.1 %). Both strains showed genome-wide average nucleotide identity scores below the species level cut-off (95 %) with all Aquimarina type strains with publicly available genomes, including their closest relatives. Digital DNA-DNA hybridization further suggested a novel species status for both strains since values lower than 70 % hybridization level with other Aquimarina type strains were obtained. Strains Aq135T and Aq349T grew from 4 to 30°C and with between 1-5 % (w/v) NaCl in marine broth. The most abundant fatty acids were iso-C17 : 03-OH and iso-C15 : 0 and the only respiratory quinone was MK-6. Strain Aq135T was catalase-positive and ß-galactosidase-negative, while Aq349T was catalase-negative and ß-galactosidase-positive. These strains hold unique sets of secondary metabolite biosynthetic gene clusters and are known to produce the peptide antibiotics aquimarins (Aq135T) and the trans-AT polyketide cuniculene (Aq349T), respectively. Based on the polyphasic approach employed in this study, we propose the novel species names Aquimarina aquimarini sp. nov. (type strain Aq135T=DSM 115833T=UCCCB 169T=ATCC TSD-360T) and Aquimarina spinulae sp. nov. (type strain Aq349T=DSM 115834T=UCCCB 170T=ATCC TSD-361T).


Asunto(s)
Flavobacteriaceae , Poríferos , Animales , Agua de Mar/microbiología , Catalasa/genética , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , beta-Galactosidasa/genética , Vitamina K 2
20.
Microb Cell Fact ; 23(1): 103, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584273

RESUMEN

BACKGROUND: The macrolide antibiotic avermectin, a natural product derived from Streptomyces avermitilis, finds extensive applications in agriculture, animal husbandry and medicine. The mtrA (sav_5063) gene functions as a transcriptional regulator belonging to the OmpR family. As a pleiotropic regulator, mtrA not only influences the growth, development, and morphological differentiation of strains but also modulates genes associated with primary metabolism. However, the regulatory role of MtrA in avermectin biosynthesis remains to be elucidated. RESULTS: In this study, we demonstrated that MtrA, a novel OmpR-family transcriptional regulator in S. avermitilis, exerts global regulator effects by negatively regulating avermectin biosynthesis and cell growth while positively controlling morphological differentiation. The deletion of the mtrA gene resulted in an increase in avermectin production, accompanied by a reduction in biomass and a delay in the formation of aerial hyphae and spores. The Electrophoretic Mobility Shift Assay (EMSA) revealed that MtrA exhibited binding affinity towards the upstream region of aveR, the intergenic region between aveA1 and aveA2 genes, as well as the upstream region of aveBVIII in vitro. These findings suggest that MtrA exerts a negative regulatory effect on avermectin biosynthesis by modulating the expression of avermectin biosynthesis cluster genes. Transcriptome sequencing and fluorescence quantitative PCR analysis showed that mtrA deletion increased the transcript levels of the cluster genes aveR, aveA1, aveA2, aveC, aveE, aveA4 and orf-1, which explains the observed increase in avermectin production in the knockout strain. Furthermore, our findings demonstrate that MtrA positively regulates the cell division and differentiation genes bldM and ssgC, while exerting a negative regulatory effect on bldD, thereby modulating the primary metabolic processes associated with cell division, differentiation and growth in S. avermitilis, consequently impacting avermectin biosynthesis. CONCLUSIONS: In this study, we investigated the negative regulatory effect of the global regulator MtrA on avermectin biosynthesis and its effects on morphological differentiation and cell growth, and elucidated its transcriptional regulatory mechanism. Our findings indicate that MtrA plays crucial roles not only in the biosynthesis of avermectin but also in coordinating intricate physiological processes in S. avermitilis. These findings provide insights into the synthesis of avermectin and shed light on the primary and secondary metabolism of S. avermitilis mediated by OmpR-family regulators.


Asunto(s)
Ivermectina , Ivermectina/análogos & derivados , Streptomyces , Ivermectina/metabolismo , Streptomyces/metabolismo , Macrólidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA