Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39317199

RESUMEN

While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors. Mutations that altered the ratio of NPR proteoforms reduced AMPA receptors in parvalbumin-positive interneurons and affected learning behaviors in mice. In addition to NPR, upstream AUU-initiated N-terminal extension of C1q-like synaptic organizers anchored these otherwise secreted factors to the membrane. Together, these results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a potentially widespread mechanism in diversifying protein localization and functions.

2.
Annu Rev Med ; 74: 427-441, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36450281

RESUMEN

Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.


Asunto(s)
Enfermedades Pulmonares , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón/metabolismo , Proteínas/metabolismo
3.
J Med Virol ; 96(9): e29888, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228315

RESUMEN

This study investigated the roles of P-selectin and Clara cell secretory protein 16 (CC16) levels in the pathogenesis of severe adenovirus (ADV) pneumonia in children and evaluated their ability to predict disease. Fifty-one children (age, 1-5 years) with ADV pneumonia who were admitted to Xiamen Children's Hospital were included in this study and divided into the mild group (24 patients) and severe group (27 patients). A control group comprising healthy children of the same age who underwent routine physical examinations during the same period (30 patients) was also included. The univariate analysis demonstrated that the levels of the white blood cell count and C-reactive protein, procalcitonin, d-dimer, and P-selectin were increased in a severe group compared with a mild group, while CC16 levels were significantly decreased (p < 0.05). The logistic regression analysis revealed that P-selectin and CC16 levels were independent risk factors for severe ADV pneumonia in children. The areas under the ROC curves suggested that P-selectin and CC16 exhibited high predictive value for severe ADV pneumonia. P-selectin values more than 898.58 pg/mL and CC16 values less than 11.355 ng/mL predicted severe ADV pneumonia. P-selectin and CC16 levels are correlated with the severity of ADV pneumonia in children.


Asunto(s)
Selectina-P , Uteroglobina , Humanos , Selectina-P/sangre , Masculino , Femenino , Preescolar , Lactante , Uteroglobina/sangre , Uteroglobina/genética , Biomarcadores/sangre , Neumonía Viral/diagnóstico , Neumonía Viral/virología , Neumonía Viral/sangre , Curva ROC , Índice de Severidad de la Enfermedad , Infecciones por Adenovirus Humanos/virología , Infecciones por Adenovirus Humanos/sangre
4.
Insect Mol Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167359

RESUMEN

Waprin, a WAP (Whey acidic protein) domain-containing extracellular secretory protein, is widely known for its antibacterial properties. In this study, a waprin homologue (Tc_wapF) expressing in a female-specific manner was identified in Tribolium castaneum, through the analysis of sex-specific transcriptomes. Developmental- and tissue-specific profiling revealed the widespread expression of Tc_wapF in adult female tissues, particularly in the ovary, gut and fatbody. This female-specific expression of Tc_wapF is not regulated by the classical sex-determination cascade of T. castaneum, as we fail to get any attenuation in Tc_wapF transcript levels in Tcdsx and Tctra (key players of sex determination cascade of T. castaneum) knockdown females. RNA interference-mediated knockdown of Tc_wapF in females led to the non-hatching of eggs laid by these females, suggesting the crucial role of Tc_wapF in the embryonic development in T. castaneum. This is the first report on the identification of a sex-specific waprin homologue in an insect and its involvement in embryonic development. Future investigations on the functional conservation of insect waprins and their mechanistic role in embryonic development can be exploited for improving pest management strategies.

5.
Respir Res ; 25(1): 324, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182083

RESUMEN

BACKGROUND: Cobalt (Co) is a metal which is widely used in the industrial production. The previous studies found the toxic effects of environmental Co exposure on multiple organs. However, the correlation of blood Co concentration with lung function was inconsistent in patients with chronic obstructive pulmonary disease (COPD). METHODS: All 771 stable COPD patients were recruited. Peripheral blood and clinical information were collected. The levels of blood Co and serum CC16 were measured. RESULTS: Cross-sectional study suggested that the level of blood Co was inversely and dose-dependently related to lung function parameters. Each 1 ppm elevation of blood Co was related to 0.598 L decline in FVC, 0.465 L decline in FEV1, 6.540% decline in FEV1/FVC%, and 14.013% decline in FEV1%, respectively. Moreover, higher age, enrolled in winter, current-smoking, higher smoking amount, and inhaled corticosteroids prominently exacerbated the negative correlation between blood Co and lung function. Besides, serum CC16 content was gradually reduced with blood Co elevation in COPD patients. Besides, serum CC16 was positively correlated with lung function, and inversely related to blood Co. Additionally, decreased CC16 substantially mediated 11.45% and 6.37% Co-triggered downregulations in FEV1 and FEV1%, respectively. CONCLUSION: Blood Co elevation is closely related to the reductions of pulmonary function and serum CC16. CC16 exerts a significantly mediating role of Co-related to pulmonary function decrease among COPD patients.


Asunto(s)
Cobalto , Enfermedad Pulmonar Obstructiva Crónica , Uteroglobina , Humanos , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Masculino , Uteroglobina/sangre , Femenino , Cobalto/sangre , Anciano , Persona de Mediana Edad , Estudios Transversales , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Pulmón/metabolismo , Volumen Espiratorio Forzado/fisiología , Pruebas de Función Respiratoria/métodos , Biomarcadores/sangre , Capacidad Vital/fisiología
6.
J Eukaryot Microbiol ; : e13046, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228342

RESUMEN

Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.

7.
Skin Res Technol ; 30(1): e13568, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200622

RESUMEN

BACKGROUND: The conditioned medium from human dermal fibroblasts (dermal fibroblast-conditioned medium; DFCM) contains a diverse array of secretory proteins, including growth factors and wound repair-promoting proteins. Angiogenesis, a crucial process that facilitates the infiltration of inflammatory cells during wound repair, is induced by a hypoxic environment and inflammatory cytokines. METHODS: In this study, we conducted a comprehensive bioinformatic analysis of 337 proteins identified through proteomics analysis of DFCM. We specifically focused on 64 DFCM proteins with potential involvement in angiogenesis. These proteins were further classified based on their characteristics, and we conducted a detailed analysis of their protein-protein interactions. RESULTS: Gene Ontology protein classification categorized these 64 DFCM proteins into various classes, including metabolite interconversion enzymes (N = 11), protein modifying enzymes (N = 10), protein-binding activity modulators (N = 9), cell adhesion molecules (N = 6), extracellular matrix proteins (N = 6), transfer/carrier proteins (N = 3), calcium-binding proteins (N = 2), chaperones (N = 2), cytoskeletal proteins (N = 2), RNA metabolism proteins (N = 1), intercellular signal molecules (N = 1), transporters (N = 1), scaffold/adaptor proteins (N = 1), and unclassified proteins (N = 9). Furthermore, our protein-protein interaction network analysis of DFCM proteins revealed two distinct networks: one with medium confidence level interaction scores, consisting of 60 proteins with significant connections, and another at a high confidence level, comprising 52 proteins with significant interactions. CONCLUSIONS: Our bioinformatic analysis highlights the presence of a multitude of secretory proteins in DFCM that form significant protein-protein interaction networks crucial for regulating angiogenesis. These findings underscore the critical roles played by DFCM proteins in various stages of angiogenesis during the wound repair process.


Asunto(s)
Angiogénesis , Piel , Humanos , Medios de Cultivo Condicionados/farmacología , Cicatrización de Heridas , Biología Computacional
8.
Skin Res Technol ; 30(6): e13810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887125

RESUMEN

BACKGROUND: Human dermal fibroblasts secrete diverse proteins that regulate wound repair and tissue regeneration. METHODS: In this study, dermal fibroblast-conditioned medium (DFCM) proteins potentially regulating nerve restoration were bioinformatically selected among the 337 protein lists identified by quantitative liquid chromatography-tandem mass spectrometry. Using these proteins, protein-protein interaction network analysis was conducted. In addition, the roles of DFCM proteins were reviewed according to their protein classifications. RESULTS: Gene Ontology protein classification categorized these 57 DFCM proteins into various classes, including protein-binding activity modulator (N = 11), cytoskeletal protein (N = 8), extracellular matrix protein (N = 6), metabolite interconversion enzyme (N = 5), chaperone (N = 4), scaffold/adapter protein (N = 4), calcium-binding protein (N = 3), cell adhesion molecule (N = 2), intercellular signal molecule (N = 2), protein modifying enzyme (N = 2), transfer/carrier protein (N = 2), membrane traffic protein (N = 1), translational protein (N = 1), and unclassified proteins (N = 6). Further protein-protein interaction network analysis of 57 proteins revealed significant interactions among the proteins that varied according to the settings of confidence score. CONCLUSIONS: Our bioinformatic analysis demonstrated that DFCM contains many secretory proteins that form significant protein-protein interaction networks crucial for regulating nerve restoration. These findings underscore DFCM proteins' critical roles in various nerve restoration stages during the wound repair process.


Asunto(s)
Biología Computacional , Fibroblastos , Regeneración Nerviosa , Mapas de Interacción de Proteínas , Humanos , Fibroblastos/metabolismo , Regeneración Nerviosa/fisiología , Mapas de Interacción de Proteínas/fisiología , Medios de Cultivo Condicionados , Cicatrización de Heridas/fisiología , Células Cultivadas , Espectrometría de Masas en Tándem , Dermis/citología , Dermis/metabolismo
9.
J Invertebr Pathol ; 207: 108205, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313094

RESUMEN

Entomopathogenic nematodes (EPNs) are obligate parasitic "biopesticides" that play a vital role in pest management. A thorough understanding of their pathogenic mechanisms is essential for promoting their widespread use in agricultural pest control. The pathogenicity of EPNs arises from two key factors: the pathogenicity of their symbiotic bacteria and the nematodes' intrinsic pathogenic mechanisms. This review concentrates on the latter, offering an exploration of the excretory/secretory products of EPNs, along with their pathogenic mechanisms and key components. Particular attention is given to specific excretory/secretory proteins (ESPs) identified in various EPN species. The aim is to provide a foundational reference for comprehending the role of these ESPs in pest control. Furthermore, the review discusses the potential of these findings to advance the development of eco-friendly biopesticides, thereby supporting sustainable agricultural practices.

10.
Ecotoxicol Environ Saf ; 284: 117002, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241606

RESUMEN

Club cell secretory protein (CC16) is considered a biological marker indicating lung epithelial and lung permeability. The joint effect of polycyclic aromatic hydrocarbons (PAHs) exposure on CC16 levels and the association between CC16 levels and long-term lung function changes lacks epidemiological evidence. To investigate the effect of PAHs exposure on plasma CC16 levels and the association between CC16 levels and long-term lung function changes, this study enrolled 307 coke oven workers in 2014, measured their baseline concentrations of urinary PAHs metabolites and plasma CC16, with follow-up after nine years. Bayesian kernel machine regression (BKMR) was employed to analyze the effect of mixed PAHs metabolites. The dose-effect association between baseline CC16 levels and lung function during 2014-2023 was explored using restricted cubic spline (RCS) models, and stratified analysis investigated the effect modification of PAHs exposure and smoking status on this association. The median age of the participants was 40 years, with 93.81 % male. The results showed that plasma CC16 levels decreased by 2.02 ng/mL (95 % CI: -3.77, -0.27) among all participants and FVC (% predicted) decreased by 2.87 % (95 % CI: -5.59, -0.14) in the low CC16 group with each unit increase in log-transformed 2-OHNAP. The BKMR model revealed a negative association between PAHs metabolites and both plasma CC16 levels and FVC (% predicted). Plasma CC16 decreased by 1.05 units when all PAHs metabolites at P65 compared to those at P50. After 9 years of follow-up, baseline CC16 levels were significantly associated with follow-up FVC (% predicted), FEV1 (% predicted), and small airway dysfunction risk. Furthermore, high PAHs exposure and smoking enhanced the association between CC16 and lung function. In conclusion, PAHs exposure decreases CC16 levels, and coking workers with low baseline CC16 levels may experience more severe future lung function decline.


Asunto(s)
Biomarcadores , Coque , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Uteroglobina , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Biomarcadores/sangre , Estudios de Cohortes , Coque/toxicidad , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Exposición Profesional/efectos adversos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pruebas de Función Respiratoria , Uteroglobina/sangre
11.
Zygote ; : 1-6, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828560

RESUMEN

Spermatogenesis is a highly complex process through which mature sperms are produced, and it requires three important stages; mitosis, meiosis and sperm formation. The expression of genes regulated by transcription factors at specific stages exerts important regulatory effects on the development process of germ cells. Male mice with overexpressed programmed death ligand 1 (PD-L1) (B7 homolog1) in the testis have infertility and abnormal sperm development, thereby exhibiting severe malformation and sloughing throughout spermatid maturation and collapsed and disorganized seminiferous epithelium structure. Furthermore, PD-L1 overexpression causes overexpression of cysteine-rich secretory protein 1 (CRISP1) in the epididymis and adversely affects or precludes sperm energization, sperm-pellucida binding and sperm-oocyte fusion. These findings suggest that CRISP1 and PD-L1 can interact with each other to induce male infertility and germ-cell dissociation.

12.
J Biol Chem ; 298(3): 101724, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35157849

RESUMEN

ORF8 is an accessory protein encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consensus regarding the biological functions of ORF8 is lacking, largely because the fundamental characteristics of this protein in cells have not been determined. To clarify these features, we herein established an ORF8 expression system in 293T cells. Using this system, approximately 41% of the ORF8 expressed in 293T cells were secreted extracellularly as a glycoprotein homodimer with inter/intramolecular disulfide bonds. Intracellular ORF8 was sensitive to the glycosidase Endo H, whereas the secreted portion was Endo-H-resistant, suggesting that secretion occurs via a conventional pathway. Additionally, immunoblotting analysis showed that the total amounts of the major histocompatibility complex class Ι (MHC-I), angiotensin-converting enzyme 2 (ACE2), and SARS-CoV-2 spike (CoV-2 S) proteins coexpressed in cells were not changed by the increased ORF8 expression, although FACS analysis revealed that the expression of the cell surface MHC-I protein, but not that of ACE2 and CoV-2 S proteins, was reduced by ORF8 expression. Finally, we demonstrate by RNA-seq analysis that ORF8 had no significant stimulatory effects in human primary monocyte-derived macrophages (MDMs). Taken together, our results provide fundamental evidence that the ORF8 glycoprotein acts as a secreted homodimer, and its functions are likely associated with the intracellular transport and/or extracellular signaling in SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Glicoproteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteínas Virales , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Glicoproteínas/metabolismo , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas Virales/metabolismo
13.
Biochem Biophys Res Commun ; 684: 149120, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-37879252

RESUMEN

Bacterial chitinases serve to hydrolyse chitin as food source or as defence mechanism. Given that chitin is not produced by mammals, it is intriguing that Mycobacterium tuberculosis, an exclusively human pathogen harbours Rv1987, a probable chitinase and secretes it. Interestingly genes annotated as chitinases are widely distributed among Mycobacterium tuberculosis complex species, clinical isolates and other human pathogens M. abscessus and M. ulcerans. However, Mycobacterial chitinases are not characterized and hence the functions remain unknown. In the present study, we show that Rv1987 is a chitin and cellulose binding protein lacking enzymatic activity in contrary to its current annotation. Further, we show Rv1987 has moon lighting functions in M. tuberculosis pathobiology signifying roles of bacterial cellulose binding clusters in infections.


Asunto(s)
Quitinasas , Mycobacterium tuberculosis , Animales , Humanos , Quitinasas/genética , Quitina/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Portadoras , Celulosa/metabolismo , Mamíferos/metabolismo
14.
BMC Plant Biol ; 23(1): 215, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098482

RESUMEN

BACKGROUND: Melatonin is considered to be a polyfunctional master regulator in animals and higher plants. Exogenous melatonin inhibits plant infection by multiple diseases; however, the role of melatonin in Cucumber green mottle mosaic virus (CGMMV) infection remains unknown. RESULTS: In this study, we demonstrated that exogenous melatonin treatment can effectively control CGMMV infection. The greatest control effect was achieved by 3 days of root irrigation at a melatonin concentration of 50 µM. Exogenous melatonin showed preventive and therapeutic effects against CGMMV infection at early stage in tobacco and cucumber. We utilized RNA sequencing technology to compare the expression profiles of mock-inoculated, CGMMV-infected, and melatonin+CGMMV-infected tobacco leaves. Defense-related gene CRISP1 was specifically upregulated in response to melatonin, but not to salicylic acid (SA). Silencing CRISP1 enhanced the preventive effects of melatonin on CGMMV infection, but had no effect on CGMMV infection. We also found exogenous melatonin has preventive effects against another Tobamovirus, Pepper mild mottle virus (PMMoV) infection. CONCLUSIONS: Together, these results indicate that exogenous melatonin controls two Tobamovirus infections and inhibition of CRISP1 enhanced melatonin control effects against CGMMV infection, which may lead to the development of a novel melatonin treatment for Tobamovirus control.


Asunto(s)
Melatonina , Tobamovirus , Reguladores del Crecimiento de las Plantas , Cisteína , Melatonina/farmacología , Tobamovirus/genética , Nicotiana/genética , Enfermedades de las Plantas/genética
15.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108615

RESUMEN

A significant fraction of couples around the world suffer from polycystic ovarian syndrome (PCOS), a disease defined by the characteristics of enhanced androgen synthesis in ovarian theca cells, hyperandrogenemia, and ovarian dysfunction in women. Most of the clinically observable symptoms and altered blood biomarker levels in the patients indicate metabolic dysregulation and adaptive changes as the key underlying mechanisms. Since the liver is the metabolic hub of the body and is involved in steroid-hormonal detoxification, pathological changes in the liver may contribute to female endocrine disruption, potentially through the liver-to-ovary axis. Of particular interest are hyperglycemic challenges and the consequent changes in liver-secretory protein(s) and insulin sensitivity affecting the maturation of ovarian follicles, potentially leading to female infertility. The purpose of this review is to provide insight into emerging metabolic mechanisms underlying PCOS as the primary culprit, which promote its incidence and aggravation. Additionally, this review aims to summarize medications and new potential therapeutic approaches for the disease.


Asunto(s)
Hiperandrogenismo , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Síndrome del Ovario Poliquístico/metabolismo , Hiperandrogenismo/complicaciones , Resistencia a la Insulina/fisiología , Hígado/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769242

RESUMEN

Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from "non-neurotoxic" snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.


Asunto(s)
Neurotoxinas , Toxinas Biológicas , Animales , Humanos , Neurotoxinas/toxicidad , Venenos de Serpiente/toxicidad , Venenos de Serpiente/metabolismo , Elapidae/metabolismo , Fosfolipasas A2 , Venenos Elapídicos/química
17.
J Bacteriol ; 204(7): e0007322, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35670588

RESUMEN

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.


Asunto(s)
Enfermedades de las Aves de Corral , Riemerella , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Patos/metabolismo , Patos/microbiología , Péptido Hidrolasas/metabolismo , Enfermedades de las Aves de Corral/microbiología , Riemerella/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
J Cell Mol Med ; 26(12): 3329-3342, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35488454

RESUMEN

The human secretome and membrane proteome are a large source of cancer biomarkers. Membrane-bound and secreted proteins are promising targets for many clinically approved drugs, including for the treatment of tumours. Here, we report a deep systematic analysis of 957 adenocarcinomas of the oesophagus, stomach, colon and rectum to examine the cancer-associated human secretome and membrane proteome of gastrointestinal tract adenocarcinomas (GIACs). Transcriptomic data from these GIACs were applied to an innovative majority decision-based algorithm. We quantified significantly expressed protein-coding genes. Interestingly, we found a consistent pattern in a small group of genes found to be overexpressed in GIACs, which were associated with a cytokine-cytokine interaction pathway (CCRI) in all four cancer subtypes. These CCRI associated genes, which spanned both one secretory and one membrane isoform were further analysed, revealing a putative biomarker, interleukin-1 receptor accessory protein (IL1RAP), which indicated a poor overall survival, a positive correlation with cancer stemness and a negative correlation with several kinds of T cells. These results were further validated in vitro through the knockdown of IL1RAP in two human gastric carcinoma cell lines, which resulted in a reduced indication of cellular proliferation, migration and markers of invasiveness. Following IL1RAP silencing, RNA seq results showed a consistent pattern of inhibition related to CCRI, proliferation pathways and low infiltration of regulatory T cells (Tregs) and CD8 naive cells. The significance of the human secretome and membrane proteome is elucidated by these findings, which indicate IL1RAP as a potential candidate biomarker for cytokine-mediated cancer immunotherapy in gastric carcinoma.


Asunto(s)
Adenocarcinoma , Proteoma , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Colon/patología , Citocinas/metabolismo , Humanos , Proteoma/metabolismo , Secretoma
19.
Cell Biol Int ; 46(5): 747-754, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066967

RESUMEN

The study of secretory protein kinase is an emergent research field in recent years. The secretion phenomenon of type II cGMP-dependent protein kinase (PKG II) was found in our latest research and our previous study confirmed that PKG II inhibited platelet-derived growth factor receptor ß (PDGFRß) activation induced by platelet-derived growth factor BB (PDGF-BB) within the gastric cancer cells. Thus, this study was designed to investigated effect of secretory PKG II on PDGFRß. Transwell assay and CCK8 assay indicated that secretory PKG II reversed PDGF-BB-induced cell migration, invasion, and proliferation. Immunoprecipitation, GST pull down and Western blotting results showed that secretory PKG II combined with extracellular domains of PDGFRß and phosphorylated it, and thereby inhibited PDGF-BB-induced activation of PDGFRß, and downstream PI3K/Akt and MAPK/ERK pathways. Mutation at Ser254 of PDGFRß to alanine abolished the above inhibitory effects of secretory PKG II on PDGFRß, indicating that Ser254 was the specific site phosphorylated by secretory PKG II. In conclusion, secretory PKG II inhibited PDGFRß activation via Ser254 site.


Asunto(s)
Neoplasias Gástricas , Becaplermina/metabolismo , Línea Celular Tumoral , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias Gástricas/metabolismo
20.
Exp Parasitol ; 242: 108386, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179852

RESUMEN

Trichinellosis, a disease caused by infection with Trichinella spp, poses an economic problem in the animal sector and a recurrent health problem for humans. Discovering the new diagnostic tests may be achieved by identification and production of species- and stage-specific recombinant proteins of Trichinella genus which are recognized by the host antibodies after infection. In this study the T. britovi proteins identified earlier in excretory-secretory (ES) products: CTRL, ES21 and HSP20, were cloned and produced using a eukaryotic Pichia pastoris system. Their immunodiagnostic properties were verified by measuring the abundance of specific IgG antibodies in sera from mice and pigs experimentally infected with T. britovi or T. spiralis. The rTbCTRL and the rTbES21 proteins were more effectively produced and stable than rTbHSP20. The most sensitive protein for serodiagnostic purposes occurred to be CTRL; anti-rTbCTRL IgG level increased at 41 days post infection (dpi) in pigs infected with T. britovi and 45 dpi for those infected with T. spiralis. The rTbES21 protein was the most specific for the T. britovi species, as no antibody titers were observed in pigs infected with T. spiralis. Following the multiple-antigen strategy, the combination of rTbCTRL + rTbES21 was applied in ELISA, but no significant difference in IgG level was detected in the tested conditions.


Asunto(s)
Enfermedades de los Porcinos , Trichinella spiralis , Trichinella , Triquinelosis , Humanos , Porcinos , Animales , Trichinella spiralis/genética , Anticuerpos Antihelmínticos , Inmunoglobulina G , Antígenos Helmínticos/genética , Triquinelosis/diagnóstico , Triquinelosis/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Porcinos/diagnóstico , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA