RESUMEN
The endosperm in cereal grains is instrumental in determining grain yield and seed quality, as it controls starch and seed storage protein (SSP) production. In this study, we identified a specific nuclear factor-Y (NF-Y) trimeric complex in wheat (Triticum aestivum L.), consisting of TaNF-YA3-D, TaNF-YB7-B, and TaNF-YC6-B, and exhibiting robust expression within the endosperm during grain filling. Knockdown of either TaNF-YA3 or TaNF-YC6 led to reduced starch but increased gluten protein levels. TaNF-Y indirectly boosted starch biosynthesis genes by repressing TaNAC019, a repressor of cytosolic small ADP-glucose pyrophosphorylase 1a (TacAGPS1a), sucrose synthase 2 (TaSuS2), and other genes involved in starch biosynthesis. Conversely, TaNF-Y directly inhibited the expression of Gliadin-γ-700 (TaGli-γ-700) and low molecular weight-400 (TaLMW-400). Furthermore, TaNF-Y components interacted with SWINGER (TaSWN), the histone methyltransferase subunit of Polycomb repressive complex 2 (PRC2), to repress TaNAC019, TaGli-γ-700, and TaLMW-400 expression through trimethylation of histone H3 at lysine 27 (H3K27me3) modification. Notably, weak mutation of FERTILIZATION INDEPENDENT ENDOSPERM (TaFIE), a core PRC2 subunit, reduced starch but elevated gliadin and LMW-GS contents. Intriguingly, sequence variation within the TaNF-YB7-B coding region was linked to differences in starch and SSP content. Distinct TaNF-YB7-B haplotypes affect its interaction with TaSWN-B, influencing the repression of targets like TaNAC019 and TaGli-γ-700. Our findings illuminate the intricate molecular mechanisms governing TaNF-Y-PRC2-mediated epigenetic regulation for wheat endosperm development. Manipulating the TaNF-Y complex holds potential for optimizing grain yield and enhancing grain quality.
RESUMEN
To preserve germination ability, plant seeds must be protected from environmental stresses during the storage period. Here, we demonstrate that autophagy, an intracellular degradation system, maintains seed germination ability in Arabidopsis thaliana. The germination ability of long-term (>5 years) stored dry seeds of autophagy-defective (atg) mutant and wild-type (WT) plants was compared. Long-term stored (old) seeds of atg mutants showed lower germination ability than WT seeds, although short-term stored (new) seeds of atg mutants did not show such a phenotype. After removal of the seed coat and endosperm from old atg mutant seeds, the embryos developed into seedlings. Autophagic flux was maintained in endosperm cells during the storage period, and autophagy defect resulted in the accumulation of oxidized proteins and accelerated endosperm cell death. Consistent with these findings, the transcripts of genes, ENDO-ß-MANNANASE 7 and EXPANSIN 2, which are responsible for degradation/remodeling of the endosperm cell wall during germination, were reduced in old atg mutant seeds. We conclude that autophagy maintains endosperm quality during seed storage by suppressing aging-dependent oxidative damage and cell death, which allows the endosperm to perform optimal functions during germination, i.e., cell wall degradation/remodeling, even after long-term storage.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Endospermo/genética , Germinación/fisiología , Semillas/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Regulación de la Expresión Génica de las PlantasRESUMEN
Coat protein complex II (COPII) vesicles play crucial roles in mediating the endoplasmic reticulum (ER) exit of newly synthesized proteins to the Golgi in eukaryotic cells. However, the molecular functions of COPII components and their functional diversifications in plant seeds remain obscure. Here, we showed that the rice (Oryza sativa) glutelin precursor accumulation12 (gpa12) mutant is defective in storage protein export from the ER, resulting in the formation of aggregated protein bodies. Map-based cloning revealed that GPA12 encodes a COPII outer layer protein, Sec13a, that mainly localizes to endoplasmic reticulum exit sites (ERES) and partially localizes to the Golgi. Biochemical experiments verified that Sec13a physically interacts with Sec31 and Sec16, and mutation in Sec13 compromises its interaction with Sec31 and Sec16, thereby affecting the membrane association of the inner complex components Sar1b and Sec23c. Apart from Sec13a, the rice genome encodes two other Sec13 isoforms, Sec13b and Sec13c. Notably, we observed an abnormal accumulation of globular ER structures in the sec13bc double mutant but not in the single mutants, suggesting a functional redundancy of Sec13b and Sec13c in modulating ER morphology. Taken together, our results substantiated that Sec13a plays an important role in regulating storage protein export from the ER, while Sec13b and Sec13c are required for maintaining ER morphology in rice endosperm cells. Our findings provide insights into the functional diversification of COPII components in plants.
RESUMEN
BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.
Asunto(s)
Productos Agrícolas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Aceites de Plantas , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Aceites de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Seed protein localization in seed storage protein bodies (SSPB) and their significance in germination are well recognized. SSPB are spherical and contain an assembly of water-soluble and salt-soluble proteins. Although the native structures of some SSPB proteins are explored, their structural arrangement to the functional correlation in SSPB remains unknown. SSPB are morphologically analogous to electron-dense amyloid-containing structures reported in other organisms. Here, we show that wheat, mungbean, barley, and chickpea SSPB exhibit a speckled pattern of amyloids interspersed in an amyloid-like matrix along with native structures, suggesting the composite nature of SSPB. This is confirmed by multispectral imaging methods, electron microscopy, infrared, and X-ray diffraction analysis, using in situ tissue sections, ex vivo protoplasts, and in vitro SSPB. Laser capture microdissection coupled with peptide fingerprinting has shown that globulin 1 and 3 in wheat, and 8S globulin and conglycinin in mungbean are the major amyloidogenic proteins. The amyloid composites undergo a sustained degradation during germination and seedling growth, facilitated by an intricate interplay of plant hormones and proteases. These results would lay down the foundation for understanding the amyloid composite structure during SSPB biogenesis and its evolution across the plant kingdom and have implications in both basic and applied plant biology.
RESUMEN
BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.
Asunto(s)
Aegilops , Semillas , Triticum , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Semillas/genética , Semillas/metabolismo , Hibridación Genética , Poliploidía , Almidón/biosíntesis , Almidón/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteómica/métodos , MultiómicaRESUMEN
BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.
Asunto(s)
Fagus , Metionina , Proteínas de Plantas , Proteómica , Semillas , Fagus/metabolismo , Metionina/metabolismo , Metionina/análogos & derivados , Semillas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinación , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Barley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.a locus that is reported to be caused by an SNP in the barley prolamin-box binding factor gene (BPBF). Reports suggest the lys3.a locus prevents CG DNA demethylation at the Hor2 (B-hordein) promoter during grain development subsequently causing hypermethylation and inhibiting gene expression. In lys3.a mutants, endosperm-specific ß-amylase (Bmy1) and Hor2 are similarly downregulated during grain development and thus we hypothesize that the inability to demethylate the Bmy1 promoter CG islands is also causing Bmy1 downregulation. We use whole-genome bisulfite sequencing and mRNA-seq on developing endosperms from two lys3.a mutants and a lys3.b mutant to determine all downstream genes affected by lys3 mutations. RNAseq analysis identified 306 differentially expressed genes (DEGs) shared between all mutants and their parents and 185 DEGs shared between both lys3.a mutants and their parents. Global DNA methylation levels and promoter CG DNA methylation levels were not significantly different between the mutants and their parents and thus refute the hypothesis that the lys3.a mutant's phenotype is caused by dysregulation of demethylation during grain development. The majority of DEGs were downregulated (e.g., B- and C-hordeins and Bmy1), but some DEGs were upregulated (e.g., ß-glucosidase, D-hordein) suggesting compensatory effects and potentially explaining the low ß-glucan phenotype observed in lys3.a germplasm. These findings have implications on human health and provide novel insight to barley breeders regarding the use of BPBF transcription factor mutants to create gluten-free barley varieties.
Asunto(s)
Hordeum , Factores de Transcripción , Animales , Humanos , Prolaminas , Hordeum/genética , Endospermo/genética , Grano Comestible/genética , Metilación de ADN/genética , GlútenesRESUMEN
Maize grain is deficient in lysine. While the opaque2 mutation increases grain lysine, o2 is a transcription factor that regulates a wide network of genes beyond zeins, which leads to pleiotropic and often negative effects. Additionally, the drastic reduction in 19 kDa and 22 kDa alpha-zeins causes a floury kernel, unsuitable for agricultural use. Quality protein maize (QPM) overcame the undesirable kernel texture through the introgression of modifying alleles. However, QPM still lacks a functional o2 transcription factor, which has a penalty on non-lysine amino acids due to the o2 mutation. CRISPR/cas9 gives researchers the ability to directly target genes of interest. In this paper, gene editing was used to specifically target the 19 kDa alpha zein gene family. This allows for proteome rebalancing to occur without an o2 mutation and without a total alpha-zein knockout. The results showed that editing some, but not all, of the 19 kDa zeins resulted in up to 30% more lysine. An edited line displayed an increase of 30% over the wild type. While not quite the 55% lysine increase displayed by QPM, the line had little collateral impact on other amino acid levels compared to QPM. Additionally, the edited line containing a partially reduced 19 kDa showed an advantage in kernel texture that had a complete 19 kDa knockout. These results serve as proof of concept that editing the 19 kDa alpha-zein family alone can enhance lysine while retaining vitreous endosperm and a functional O2 transcription factor.
Asunto(s)
Lisina , Zeína , Lisina/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zeína/química , Endospermo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Aminoácidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.
Asunto(s)
Cicer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Almacenamiento de Semillas , Factores de Transcripción , Secuencia de Bases , Cicer/genética , Cicer/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Activación Transcripcional/genéticaRESUMEN
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
RESUMEN
INTRODUCTION: Hazelnuts are a leading trigger of food allergy. To date, several molecular components of hazelnut are available for component-resolved diagnosis. However, little is known about how simultaneous sensitization to multiple allergens affects the severity of the hazelnut-induced reaction. In a previous study, our group demonstrated a lower risk of systemic reactions to peach in patients sensitized to both Pru p 3 and Pru p 1 than in the patient monosensitized to peach LTP. We aimed to assess whether this was also true in hazelnut allergy in a cohort of adult patients. METHODS: Patients were selected based on a history of symptoms such as urticaria, vomiting, diarrhea, asthma, and anaphylaxis indicative of hazelnut IgE-mediated food allergy and graded according to a clinical severity scale. For all patients, specific IgE was determined for Cor a 1 and Cor a 8 and, for most patients, also Cor a 9. Patients were offered an oral food challenge in open format (OFC) with a cocoa-based roasted hazelnut spread on a voluntary basis in order to prescribe an appropriate diet. RESULTS: A total of two hundred and fourteen patients were recruited. Among these, 43 patients were monosensitized to Cor a 8. One hundred and seventy-one patients were sensitized to Cor a 1 (79.9%), and, among them, 48/171 (28.1%) were also Cor a 8 positive. Cor a 9 was evaluated in 124/214 patients, testing positive in 21/124 (16.9%). Patients monosensitized to Cor a 8 experienced systemic reactions more frequently than those sensitized to Cor a 1 ± Cor a 8 (p < 0.00001), with significantly more severe reactions (p < 0.0005) and testing more frequently positive at OFC (p < 0.0001). Regarding Cor a 9, the sensitized patients were significantly younger (p = 0.0013) and showed reactions of similar severity to patients who tested Cor a 9 negative, and these reactions were milder than in patients monosensitized only to Cor a 8. DISCUSSION/CONCLUSION: Sensitization to Cor a 1 seems to protect from the development of the severe systemic reactions induced by Cor a 8 sensitization, Cor a 9 does not influence the severity of symptoms in adult patients. The OFC with roasted hazelnut may help in dietary guidance.
Asunto(s)
Corylus , Hipersensibilidad a los Alimentos , Hipersensibilidad a la Nuez , Adulto , Humanos , Corylus/efectos adversos , Proteínas de Plantas , Hipersensibilidad a la Nuez/diagnóstico , Antígenos de Plantas , Inmunoglobulina E , Alérgenos/efectos adversos , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/epidemiologíaRESUMEN
BACKGROUND: Tepary bean (Phaseolus acutifolius A. Gray) is one of the five species domesticated from the genus Phaseolus with genetic resistance to biotic and abiotic stress. To understand the mechanisms underlying drought responses in seed storage proteins germinated on water and polyethylene glycol (PEG-6000) at -0.49 MPa, we used a proteomics approach to identify potential molecular target proteins associated with the low water potential stress response. METHODS: Storage proteins from cotyledons of Tepary bean seeds germinated at 24, 48 and 72 h on water and PEG-6000 at -0.49 MPa were analyzed by one-dimensional electrophoresis (DE) with 2-DE analysis and shotgun mass spectrometry. Using computational database searching and bioinformatics analyses, we performed Gene Ontology (GO) and protein interactome (functional protein association network) String analyses. RESULTS: Comparative analysis showed that the effect of PEG-6000 on root growth was parallel to that on germination. Based on the SDSâPAGE protein banding patterns and 2-DE analysis, ten differentially abundant seed storage proteins showed changes in storage proteins, principally in the phaseolin and lectin fractions. We found many proteins that are recognized as drought stress-responsive proteins, and several of them are predicted to be intrinsically related to abiotic stress. The shotgun analysis searched against UniProt's legume database, and Gene Ontology (GO) analysis indicated that most of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. The proteinâprotein interaction networks from functional enrichment analysis showed that phytohemagglutinin interacts with proteins associated with the degradation of storage proteins in the cotyledons of common bean during germination. CONCLUSION: These findings suggest that Tepary bean seed proteins provide valuable information with the potential to be used in genetic improvement and are part of the drought stress response, making our approach a potentially useful strategy for discovering novel drought-responsive proteins in other plant models.
RESUMEN
Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.
Asunto(s)
Aminoácidos Esenciales , Proteómica , Animales , Humanos , Transporte Biológico , Proteínas de Almacenamiento de Semillas , Azufre , SulfatosRESUMEN
Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Semillas , Glycine max/genética , Glycine max/metabolismo , Semillas/genética , Semillas/metabolismo , Cromosomas de las Plantas/genética , Redes Reguladoras de Genes , Fitomejoramiento/métodos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Transcriptoma/genética , MultiómicaRESUMEN
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Regulación de la Expresión Génica de las Plantas , Oryza , Prolaminas , Almidón , Oryza/genética , Oryza/metabolismo , Prolaminas/metabolismo , Prolaminas/genética , Almidón/metabolismo , Edición Génica/métodos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Semillas/metabolismo , Glútenes/genética , Glútenes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión GénicaRESUMEN
Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.
Asunto(s)
Grano Comestible , Almidón , Humanos , Grano Comestible/metabolismo , Almidón/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Plantas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismoRESUMEN
Food allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea). Cotyledon explants of an Indian gene bank accession (CR2664) and the German variety Terratop were transformed using Agrobacterium tumefaciens harboring binary vectors with multiple single guide RNAs to induce either large deletions or frameshift mutations in both Bra j I homoeologs. A total of 49 T0 lines were obtained with up to 3.8% transformation efficiency. Four lines had large deletions of 566 up to 790 bp in the Bra j IB allele. Among 18 Terratop T0 lines, nine carried indels in the targeted regions. From 16 analyzed CR2664 T0 lines, 14 held indels and three had all four Bra j I alleles mutated. The majority of the CRISPR/Cas9-induced mutations were heritable to T1 progenies. In some edited lines, seed formation and viability were reduced and seeds showed a precocious development of the embryo leading to a rupture of the testa already in the siliques. Immunoblotting using newly developed Bra j I-specific antibodies revealed the amount of Bra j I protein to be reduced or absent in seed extracts of selected lines. Removing an allergenic determinant from mustard is an important first step towards the development of safer food crops.
Asunto(s)
Alérgenos/genética , Hipersensibilidad a los Alimentos/prevención & control , Edición Génica/métodos , Planta de la Mostaza/genética , Fitomejoramiento/métodos , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/genética , Agrobacterium tumefaciens , Sistemas CRISPR-Cas , Productos Agrícolas/química , Productos Agrícolas/genética , Genes de Plantas , Variación Genética , Genotipo , Plantas Modificadas Genéticamente , Transformación GenéticaRESUMEN
Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.
Asunto(s)
Lupinus , Australia , Cromosomas , Genómica , Humanos , Lupinus/genética , FitomejoramientoRESUMEN
KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.