Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 72(2): 355-368.e4, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270105

RESUMEN

RIG-I has a remarkable ability to specifically select viral 5'ppp dsRNAs for activation from a pool of cytosolic self-RNAs. The ATPase activity of RIG-I plays a role in RNA discrimination and activation, but the underlying mechanism was unclear. Using transient-state kinetics, we elucidated the ATPase-driven "kinetic proofreading" mechanism of RIG-I activation and RNA discrimination, akin to DNA polymerases, ribosomes, and T cell receptors. Even in the autoinhibited state of RIG-I, the C-terminal domain kinetically discriminates against self-RNAs by fast off rates. ATP binding facilitates dsRNA engagement but, interestingly, makes RIG-I promiscuous, explaining the constitutive signaling by Singleton-Merten syndrome-linked mutants that bind ATP without hydrolysis. ATP hydrolysis dissociates self-RNAs faster than 5'ppp dsRNA but, more importantly, drives RIG-I oligomerization through translocation, which we show to be regulated by helicase motif IVa. RIG-I translocates directionally from the dsRNA end into the stem region, and the 5'ppp end "throttles" translocation to provide a mechanism for threading and building a signaling-active oligomeric complex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteína 58 DEAD Box/metabolismo , ARN/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedades de la Aorta/metabolismo , Línea Celular , ARN Helicasas DEAD-box/metabolismo , Hipoplasia del Esmalte Dental/metabolismo , Femenino , Células HEK293 , Humanos , Hidrólisis , Cinética , Metacarpo/anomalías , Metacarpo/metabolismo , Enfermedades Musculares/metabolismo , Odontodisplasia/metabolismo , Osteoporosis/metabolismo , Unión Proteica/fisiología , ARN Bicatenario/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos , Ribosomas/metabolismo , Transducción de Señal/fisiología , Calcificación Vascular/metabolismo
2.
BMC Biol ; 18(1): 159, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148243

RESUMEN

BACKGROUND: DNA and RNA of all cellular life forms and many viruses contain an expansive repertoire of modified bases. The modified bases play diverse biological roles that include both regulation of transcription and translation, and protection against restriction endonucleases and antibiotics. Modified bases are often recognized by dedicated protein domains. However, the elaborate networks of interactions and processes mediated by modified bases are far from being completely understood. RESULTS: We present a comprehensive census and classification of EVE domains that belong to the PUA/ASCH domain superfamily and bind various modified bases in DNA and RNA. We employ the "guilt by association" approach to make functional inferences from comparative analysis of bacterial and archaeal genomes, based on the distribution and associations of EVE domains in (predicted) operons and functional networks of genes. Prokaryotes encode two classes of EVE domain proteins, slow-evolving and fast-evolving ones. Slow-evolving EVE domains in α-proteobacteria are embedded in conserved operons, potentially involved in coupling between translation and respiration, cytochrome c biogenesis in particular, via binding 5-methylcytosine in tRNAs. In ß- and γ-proteobacteria, the conserved associations implicate the EVE domains in the coordination of cell division, biofilm formation, and global transcriptional regulation by non-coding 6S small RNAs, which are potentially modified and bound by the EVE domains. In eukaryotes, the EVE domain-containing THYN1-like proteins have been reported to inhibit PCD and regulate the cell cycle, potentially, via binding 5-methylcytosine and its derivatives in DNA and/or RNA. We hypothesize that the link between PCD and cytochrome c was inherited from the α-proteobacterial and proto-mitochondrial endosymbiont and, unexpectedly, could involve modified base recognition by EVE domains. Fast-evolving EVE domains are typically embedded in defense contexts, including toxin-antitoxin modules and type IV restriction systems, suggesting roles in the recognition of modified bases in invading DNA molecules and targeting them for restriction. We additionally identified EVE-like prokaryotic Development and Cell Death (DCD) domains that are also implicated in defense functions including PCD. This function was inherited by eukaryotes, but in animals, the DCD proteins apparently were displaced by the extended Tudor family proteins, whose partnership with Piwi-related Argonautes became the centerpiece of the Piwi-interacting RNA (piRNA) system. CONCLUSIONS: Recognition of modified bases in DNA and RNA by EVE-like domains appears to be an important, but until now, under-appreciated, common denominator in a variety of processes including PCD, cell cycle control, antivirus immunity, stress response, and germline development in animals.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , ADN de Archaea/metabolismo , Genoma Arqueal , Genoma Bacteriano , ARN Bacteriano/metabolismo
3.
RNA Biol ; 14(9): 1223-1231, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28346055

RESUMEN

Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.


Asunto(s)
Adenosina Desaminasa/metabolismo , Susceptibilidad a Enfermedades , Edición de ARN , Animales , Humanos , Inmunidad , Mamíferos , Estabilidad del ARN
4.
Hum Vaccin Immunother ; 18(1): 2035117, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35240914

RESUMEN

Autoimmune diseases are caused when immune cells act against self-protein. This biological self-non-self-discrimination phenomenon is controlled by a distinct group of lymphocytes known as regulatory T cells (Tregs), which are key inflammatory response regulators and play a pivotal role in immune tolerance and homeostasis. Treg-mediated robust immunosuppression provides self-tolerance and protection against autoimmune diseases. However, once this system fails to operate or poorly operate, it leads to an extreme situation where immune system reacts against self-antigens and destroys host organs, thus causing autoimmune diseases. Tregs can target both innate and adaptive immunity via modulating multiple immune cells such as neutrophils, monocytes, antigen-presenting cells, B cells, and T cells. This review highlights the Treg-mediated immunosuppression, role of several markers and their interplay during Treg development and differentiation, and advances in therapeutic aspects of Treg cells to reduce severity of autoimmunity-related conditions along with emphasizing limitations and challenges of their usages.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T Reguladores , Células Presentadoras de Antígenos , Enfermedades Autoinmunes/terapia , Autoinmunidad , Humanos , Tolerancia Inmunológica , Terapia de Inmunosupresión
5.
Bio Protoc ; 10(5): e3543, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659517

RESUMEN

Many bacteria take part in self recognition and kin discrimination behavior using contact-dependent effectors. Understanding the effects these effectors cause is important to explain bacterial community formation and population dynamics. Typically, kin discrimination effectors are toxins that kill target cells; their effect is therefore obvious and easily measurable. However, many self-recognition effectors, such as the Proteus mirabilis Ids system, are non-lethal and do not cause obvious physiological changes in target cells. Previously, experimental techniques to probe cells experiencing non-lethal kin recognition have been limited. Here we describe a technique to reliably isolate cells deemed self and non-self through Ids self-recognition for downstream phenotypic analysis. Liquid cultures of fluorescently labeled self-recognition mutants are mixed together and inoculated on swarm-permissive agar. Mixed swarms are harvested, and each strain is isolated through fluorescence-activated cell sorting (FACS). The growth rate of each strain is measured on a plate reader. This protocol is adaptable for other bacterial species. We describe briefly how sorted particles can be used for other analyses such as RNA-Seq library preparation.

6.
Biol Philos ; 34(1): 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930513

RESUMEN

The CRISPR-Cas systems of bacterial and archaeal adaptive immunity have become a household name among biologists and even the general public thanks to the unprecedented success of the new generation of genome editing tools utilizing Cas proteins. However, the fundamental biological features of CRISPR-Cas are of no lesser interest and have major impacts on our understanding of the evolution of antivirus defense, host-parasite coevolution, self versus non-self discrimination and mechanisms of adaptation. CRISPR-Cas systems present the best known case in point for Lamarckian evolution, i.e. generation of heritable, adaptive genomic changes in response to encounters with external factors, in this case, foreign nucleic acids. CRISPR-Cas systems employ multiple mechanisms of self versus non-self discrimination but, as is the case with immune systems in general, are nevertheless costly because autoimmunity cannot be eliminated completely. In addition to the autoimmunity, the fitness cost of CRISPR-Cas systems appears to be determined by their inhibitory effect on horizontal gene transfer, curtailing evolutionary innovation. Hence the dynamic evolution of CRISPR-Cas loci that are frequently lost and (re)acquired by archaea and bacteria. Another fundamental biological feature of CRISPR-Cas is its intimate connection with programmed cell death and dormancy induction in microbes. In this and, possibly, other immune systems, active immune response appears to be coupled to a different form of defense, namely, "altruistic" shutdown of cellular functions resulting in protection of neighboring cells. Finally, analysis of the evolutionary connections of Cas proteins reveals multiple contributions of mobile genetic elements (MGE) to the origin of various components of CRISPR-Cas systems, furthermore, different biological systems that function by genome manipulation appear to have evolved convergently from unrelated MGE. The shared features of adaptive defense systems and MGE, namely the ability to recognize and cleave unique sites in genomes, make them ideal candidates for genome editing and engineering tools.

7.
Trends Cell Biol ; 24(4): 212-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24231398

RESUMEN

Small RNA-mediated gene silencing plays a pivotal role in genome immunity by recognizing and eliminating viruses and transposons that may otherwise colonize the genome. However, individual genomic parasites are highly diverse and employ multiple immune-evasion techniques, making this silencing challenging. Here I review a new theory proposing that the integrity of the germline is maintained by transgenerationally transmitted RNA 'memories' that record ancestral gene expression patterns and delineate 'self' from 'foreign' sequences. To maintain such recollection, two tactics are employed in parallel: 'black listing' of invading nucleic acids and 'guest listing' of endogenous genes. Studies in several organisms have shown that this memorization is used by the next generation of small RNAs to act as 'inherited vaccines' that attack invading elements or as 'inherited licenses' that permit the transcription of autogenous sequences.


Asunto(s)
Fenómenos Inmunogenéticos , Memoria Inmunológica , Interferencia de ARN/inmunología , ARN Interferente Pequeño/inmunología , Animales , Células Germinativas/inmunología , Humanos , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA