RESUMEN
The emergence of sensory-guided behavior depends on sensorimotor coupling during development. How sensorimotor experience shapes neural processing is unclear. Here, we show that the coupling between motor output and visual feedback is necessary for the functional development of visual processing in layer 2/3 (L2/3) of primary visual cortex (V1) of the mouse. Using a virtual reality system, we reared mice in conditions of normal or random visuomotor coupling. We recorded the activity of identified excitatory and inhibitory L2/3 neurons in response to transient visuomotor mismatches in both groups of mice. Mismatch responses in excitatory neurons were strongly experience dependent and driven by a transient release from inhibition mediated by somatostatin-positive interneurons. These data are consistent with a model in which L2/3 of V1 computes a difference between an inhibitory visual input and an excitatory locomotion-related input, where the balance between these two inputs is finely tuned by visuomotor experience.
Asunto(s)
Desempeño Psicomotor , Corteza Visual/fisiología , Animales , Retroalimentación Sensorial , Femenino , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Optogenética , Estimulación Luminosa , Corteza Visual/citología , Percepción VisualRESUMEN
Animals navigate their environment by manipulating their movements and adjusting their trajectory which requires a sophisticated integration of sensory data with their current motor status. Here, we utilize the nematode Caenorhabditis elegans to explore the neural mechanisms of processing the sensory and motor information for navigation. We developed a microfluidic device which allows animals to freely move their heads while receiving temporal NaCl stimuli. We found that C. elegans regulates neck bending direction in response to temporal NaCl concentration changes in a way which is consistent with a C. elegans' navigational strategy which regulates traveling direction toward preferred NaCl concentrations. Our analysis also revealed that the activity of a neck motor neuron is significantly correlated with neck bending and activated by the decrease in NaCl concentration in a phase-dependent manner. By combining the analysis of behavioral and neural response to NaCl stimuli and optogenetic perturbation experiments, we revealed that NaCl decrease during ventral bending activates the neck motor neuron which counteracts ipsilateral bending. Simulations further suggest that this phase-dependent response of neck motor neurons can facilitate curving toward preferred salt concentrations.
Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Cloruro de Sodio , Animales , Caenorhabditis elegans , Cloruro de Sodio Dietético , Neuronas MotorasRESUMEN
Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.
Asunto(s)
Neuronas , Corteza Somatosensorial , Ratones , Masculino , Animales , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Axones , Potenciales de la Membrana , Movimiento , Vibrisas/fisiologíaRESUMEN
Despite human's praxis abilities are unique among primates, comparative observations suggest that these cognitive motor skills could have emerged from exploitation and adaptation of phylogenetically older building blocks, namely the parieto-frontal networks subserving prehension and manipulation. Within this framework, investigating to which extent praxis and prehension-manipulation overlap and diverge within parieto-frontal circuits could help in understanding how human cognition shapes hand actions. This issue has never been investigated by combining lesion mapping and direct electrophysiological approaches in neurosurgical patients. To this purpose, 79 right-handed left-brain tumour patient candidates for awake neurosurgery were selected based on inclusion criteria. First, a lesion mapping was performed in the early postoperative phase to localize the regions associated with an impairment in praxis (imitation of meaningless and meaningful intransitive gestures) and visuo-guided prehension (reaching-to-grasping) abilities. Then, lesion results were anatomically matched with intraoperatively identified cortical and white matter regions, whose direct electrical stimulation impaired the Hand Manipulation Task. The lesion mapping analysis showed that prehension and praxis impairments occurring in the early postoperative phase were associated with specific parietal sectors. Dorso-mesial parietal resections, including the superior parietal lobe and precuneus, affected prehension performance, while resections involving rostral intraparietal and inferior parietal areas affected praxis abilities (covariate clusters, 5000 permutations, cluster-level family-wise error correction P < 0.05). The dorsal bank of the rostral intraparietal sulcus was associated with both prehension and praxis (overlap of non-covariate clusters). Within praxis results, while resection involving inferior parietal areas affected mainly the imitation of meaningful gestures, resection involving intraparietal areas affected both meaningless and meaningful gesture imitation. In parallel, the intraoperative electrical stimulation of the rostral intraparietal and the adjacent inferior parietal lobe with their surrounding white matter during the hand manipulation task evoked different motor impairments, i.e. the arrest and clumsy patterns, respectively. When integrating lesion mapping and intraoperative stimulation results, it emerges that imitation of praxis gestures first depends on the integrity of parietal areas within the dorso-ventral stream. Among these areas, the rostral intraparietal and the inferior parietal area play distinct roles in praxis and sensorimotor process controlling manipulation. Due to its visuo-motor 'attitude', the rostral intraparietal sulcus, putative human homologue of monkey anterior intraparietal, might enable the visuo-motor conversion of the observed gesture (direct pathway). Moreover, its functional interaction with the adjacent, phylogenetic more recent, inferior parietal areas might contribute to integrate the semantic-conceptual knowledge (indirect pathway) within the sensorimotor workflow, contributing to the cognitive upgrade of hand actions.
Asunto(s)
Corteza Cerebral , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Filogenia , Lóbulo Parietal , Cognición , Mapeo Encefálico , Imagen por Resonancia Magnética , GestosRESUMEN
During vocal exchanges, hearing specific auditory signals can provoke vocal responses or suppress vocalizations to avoid interference. These abilities result in the widespread phenomenon of vocal turn taking, yet little is known about the neural circuitry that regulates the input-dependent timing of vocal replies. Previous work in vocally interacting zebra finches has highlighted the importance of premotor inhibition for precisely timed vocal output. By developing physiologically constrained mathematical models, we derived circuit mechanisms based on feedforward inhibition that enable both the temporal modulation of vocal premotor drive as well as auditory suppression of vocalization during listening. Extracellular recordings in HVC during the listening phase confirmed the presence of auditory-evoked response patterns in putative inhibitory interneurons, along with corresponding signatures of auditory-evoked activity suppression. Further, intracellular recordings of identified neurons projecting to HVC from the upstream sensorimotor nucleus, nucleus interfacialis (NIf), shed light on the timing of auditory inputs to this network. The analysis of incrementally time-lagged interactions between auditory and premotor activity in the model resulted in the prediction of a window of auditory suppression, which could be, in turn, verified in behavioral data. A phasic feedforward inhibition model consistently explained the experimental results. This mechanism highlights a parsimonious and generalizable principle for how different driving inputs (vocal and auditory related) can be integrated in a single sensorimotor circuit to regulate two opposing vocal behavioral outcomes: the controlled timing of vocal output or the suppression of overlapping vocalizations.
Asunto(s)
Pinzones , Animales , Percepción Auditiva/fisiología , Pinzones/fisiología , Inhibición Psicológica , Vocalización Animal/fisiologíaRESUMEN
Effective control of movement predominantly depends on the exchange and integration between sensory feedback received by our body and motor command. However, the precise mechanisms governing the adaptation of the motor system's response to altered somatosensory signals (i.e., discrepancies between an action performed and feedback received) following movement execution remain largely unclear. In order to address these questions, we developed a unique paradigm using virtual reality (VR) technology. This paradigm can induce spatial incongruence between the motor commands executed by a body district (i.e., moving the right hand) and the resulting somatosensory feedback received (i.e., feeling touch on the left ankle). We measured functional sensorimotor plasticity in 17 participants by assessing the effector's motor cortical excitability (right hand) before and after a 10-min VR task. The results revealed a decrease in motor cortical excitability of the movement effector following exposure to a 10-min conflict between the motor output and the somatosensory input, in comparison to the control condition where spatial congruence between the moved body part and the area of the body that received the feedback was maintained. This finding provides valuable insights into the functional plasticity resulting from spatial sensorimotor conflict arising from the discrepancy between the anticipated and received somatosensory feedback following movement execution. The cortical reorganization observed can be attributed to functional plasticity mechanisms within the sensorimotor cortex that are related to establishing a new connection between somatosensory input and motor output, guided by temporal binding and the Hebbian plasticity rule.
Asunto(s)
Retroalimentación Sensorial , Corteza Motora , Estimulación Magnética Transcraneal , Realidad Virtual , Humanos , Masculino , Femenino , Estimulación Magnética Transcraneal/métodos , Retroalimentación Sensorial/fisiología , Adulto , Corteza Motora/fisiología , Adulto Joven , Potenciales Evocados Motores/fisiología , Plasticidad Neuronal/fisiología , Excitabilidad Cortical/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiologíaRESUMEN
The pedunculopontine tegmental nucleus of the brainstem (PPTg) has extensive interconnections and neuronal-behavioural correlates. It is implicated in movement control and sensorimotor integration. We investigated whether single neuron activity in freely moving rats is correlated with components of skilled forelimb movement, and whether individual neurons respond to both motor and sensory events. We found that individual PPTg neurons showed changes in firing rate at different times during the reach. This type of temporally specific modulation is like activity seen elsewhere in voluntary movement control circuits, such as the motor cortex, and suggests that PPTg neural activity is related to different specific events occurring during the reach. In particular, many neuronal modulations were time-locked to the end of the extension phase of the reach, when fine distal movements related to food grasping occur, indicating strong engagement of PPTg in this phase of skilled individual forelimb movements. In addition, some neurons showed brief periods of apparent oscillatory firing in the theta range at specific phases of the reach-to-grasp movement. When movement-related neurons were tested with tone stimuli, many also responded to this auditory input, allowing for sensorimotor integration at the cellular level. Together, these data extend the concept of the PPTg as an integrative structure in generation of complex movements, by showing that this function extends to the highly coordinated control of the forelimb during skilled reach to grasp movement, and that sensory and motor-related information converges on single neurons, allowing for direct integration at the cellular level.
Asunto(s)
Neuronas , Núcleo Tegmental Pedunculopontino , Ritmo Teta , Animales , Núcleo Tegmental Pedunculopontino/fisiología , Neuronas/fisiología , Ratas , Masculino , Ritmo Teta/fisiología , Movimiento/fisiología , Miembro Anterior/fisiología , Ratas Long-Evans , Potenciales de Acción/fisiología , Estimulación Acústica/métodosRESUMEN
BACKGROUND: It has been proposed that tics and premonitory urges in primary tic disorders (PTD), like Tourette syndrome, are a manifestation of sensorimotor noise. However, patients with tics show no obvious movement imprecision in everyday life. One reason could be that patients have strategies to compensate for noise that disrupts performance (ie, noise that is task-relevant). OBJECTIVES: Our goal was to unmask effects of elevated sensorimotor noise on the variability of voluntary movements in patients with PTD. METHODS: We tested 30 adult patients with PTD (23 male) and 30 matched controls in a reaching task designed to unmask latent noise. Subjects reached to targets whose shape allowed for variability either in movement direction or extent. This enabled us to decompose variability into task-relevant versus less task-relevant components, where the latter should be less affected by compensatory strategies than the former. In alternating blocks, the task-relevant target dimension switched, allowing us to explore the temporal dynamics with which participants adjusted movement variability to changes in task demands. RESULTS: Both groups accurately reached to targets, and adjusted movement precision based on target shape. However, when task-relevant dimensions of the target changed, patients initially produced movements that were more variable than controls, before regaining precision after several reaches. This effect persisted across repeated changes in the task-relevant dimension across the experiment, and therefore did not reflect an effect of novelty, or differences in learning. CONCLUSIONS: Our results suggest that patients with PTD generate noisier voluntary movements compared with controls, but rapidly compensate according to current task demands. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Movimiento , Desempeño Psicomotor , Trastornos de Tic , Humanos , Masculino , Femenino , Adulto , Trastornos de Tic/fisiopatología , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Adulto Joven , Persona de Mediana Edad , Síndrome de Tourette/fisiopatologíaRESUMEN
The overlap between motor and cognitive signs resulting from posterior parietal cortex (PPC) and cerebellar lesions can mask their relative contribution in the sensorimotor integration process. This study aimed to identify distinguishing motor and cognitive features to disentangle PPC and cerebellar involvement in two sensorimotor-related functions: gait and body schema representation. Thirty healthy volunteers were enrolled and randomly assigned to PPC or cerebellar stimulation. Sham stimulation and 1 Hz-repetitive-Transcranial-Magnetic-Stimulation were delivered over P3 or cerebellum before a balance and a walking distance estimation task. Each trial was repeated with eyes open (EO) and closed (EC). Eight inertial measurement units recorded spatiotemporal and kinematic variables of gait. Instability increased in both groups after real stimulation: PPC inhibition resulted in increased instability in EC conditions, as evidenced by increased ellipse area and range of movement in medio-lateral and anterior-posterior (ROMap) directions. Cerebellar inhibition affected both EC (increased ROMap) and EO stability (greater displacement of the center of mass). Inhibitory stimulation (EC vs. EO) affected also gait spatiotemporal variability, with a high variability of ankle and knee angles plus different patterns in the two groups (cerebellar vs parietal). Lastly, PPC group overestimates distances after real stimulation (EC condition) compared to the cerebellar group. Stability, gait variability, and distance estimation parameters may be useful clinical parameters to disentangle cerebellar and PPC sensorimotor integration deficits. Clinical differential diagnosis efficiency can benefit from this methodological approach.
Asunto(s)
Cerebelo , Marcha , Lóbulo Parietal , Estimulación Magnética Transcraneal , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Femenino , Marcha/fisiología , Cerebelo/fisiología , Adulto , Lóbulo Parietal/fisiología , Adulto Joven , Fenómenos Biomecánicos/fisiología , Equilibrio Postural/fisiologíaRESUMEN
Doppler shift compensation (DSC) is a unique feature observed in certain species of echolocating bats and is hypothesized to be an adaptation to detecting fluttering insects. However, current research on DSC has primarily focused on bats that are not engaged in foraging activities. In this study, we investigated the DSC performance of Pratt's roundleaf bat, Hipposideros pratti, which was trained to pursue insects in various motion states within a laboratory setting. Our study yielded three main results. First, H. pratti demonstrated highly precise DSC during insect pursuit, aligning with previous findings of other flutter-detecting foragers during orientation or landing tasks. Second, we found that the motion state of the insect prey had little effect on the DSC performance of H. pratti. Third, we observed variations in the DSC performance of H. pratti throughout the course of insect pursuit. The bats exhibited the highest DSC performance during the phase of maximum flight speed but decreased performance during the phase of insect capture. These findings of high precision overall and the time-dependent performance of DSC during insect pursuit support the hypothesis that DSC is an adaptation to detecting fluttering insects.
Asunto(s)
Quirópteros , Ecolocación , Animales , Efecto Doppler , Insectos , Conducta PredatoriaRESUMEN
The present study examined opposing and following vocal responses to altered auditory feedback (AAF) to determine how damage to left-hemisphere brain networks impairs the internal forward model and feedback mechanisms in post-stroke aphasia. Forty-nine subjects with aphasia and sixty age-matched controls performed speech vowel production tasks while their auditory feedback was altered using randomized ± 100 cents upward and downward pitch-shift stimuli. Data analysis revealed that when vocal responses were averaged across all trials (i.e., opposing and following), the overall magnitude of vocal compensation was significantly reduced in the aphasia group compared with controls. In addition, when vocal responses were analyzed separately for opposing and following trials, subjects in the aphasia group showed a significantly lower percentage of opposing and higher percentage of following vocal response trials compared with controls, particularly for the upward pitch-shift stimuli. However, there was no significant difference in the magnitude of opposing and following vocal responses between the two groups. These findings further support previous evidence on the impairment of vocal sensorimotor control in aphasia and provide new insights into the distinctive impact of left-hemisphere stroke on the internal forward model and feedback mechanisms. In this context, we propose that the lower percentage of opposing responses in aphasia may be accounted for by deficits in feedback-dependent mechanisms of audio-vocal integration and motor control. In addition, the higher percentage of following responses may reflect aberrantly increased reliance of the speech system on the internal forward model for generating sensory predictions during vocal error detection and motor control.
Asunto(s)
Afasia , Voz , Humanos , Retroalimentación , Percepción de la Altura Tonal/fisiología , Voz/fisiología , Habla/fisiología , Retroalimentación Sensorial/fisiología , Afasia/etiologíaRESUMEN
Tactile and motor imagery are crucial components of sensorimotor functioning and cognitive neuroscience research, yet the neural mechanisms of tactile imagery remain underexplored compared to motor imagery. This study employs multichannel functional near-infrared spectroscopy (fNIRS) combined with image reconstruction techniques to investigate the neural hemodynamics associated with tactile (TI) and motor imagery (MI). In a study of 15 healthy participants, we found that MI elicited significantly greater hemodynamic responses (HRs) in the precentral area compared to TI, suggesting the involvement of different cortical areas involved in two different types of sensorimotor mental imagery. Concurrently, the HRs in S1 and parietal areas exhibited comparable patterns in both TI and MI. During MI, both motor and somatosensory areas demonstrated comparable HRs. However, in TI, somatosensory activation was observed to be more pronounced. Our results highlight the distinctive neural profiles of motor versus tactile imagery and indicate fNIRS technique to be sensitive for this. This distinction is significant for fundamental understanding of sensorimotor integration and for developing advanced neurotechnologies, including imagery-based brain-computer interfaces (BCIs) that can differentiate between different types of mental imagery.
Asunto(s)
Mapeo Encefálico , Hemodinámica , Imaginación , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Imaginación/fisiología , Masculino , Femenino , Adulto , Hemodinámica/fisiología , Adulto Joven , Mapeo Encefálico/métodos , Percepción del Tacto/fisiología , Tacto/fisiología , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagenRESUMEN
Sensorimotor integration processes play a central role in daily life and require that different sources of sensory information become integrated: i.e. the information related to the object being under control of the agent (i.e. indicator) and the information about the goal of acting. Yet, how this is accomplished on a neurophysiological level is contentious. We focus on the role of theta- and beta-band activities and examine which neuroanatomical structures are involved. Healthy participants (n = 41) performed 3 consecutive pursuit-tracking EEG experiments in which the source of visual information available for tracking was varied (i.e. that of the indicator and the goal of acting). The initial specification of indicator dynamics is determined through beta-band activity in parietal cortices. When information about the goal was not accessible, but operating the indicator was required nevertheless, this incurred increased theta-band activity in the superior frontal cortex, signaling a higher need for control. Later, theta- and beta-band activities encode distinct information within the ventral processing stream: Theta-band activity is affected by the indicator information, while beta-band activity is affected by the information about the action goal. Complex sensorimotor integration is realized through a cascade of theta- and beta-band activities in a ventral-stream-parieto-frontal network.
Asunto(s)
Electroencefalografía , Lóbulo Frontal , Humanos , Lóbulo Frontal/fisiología , Sensación , Motivación , Transducción de Señal , Ritmo Teta/fisiologíaRESUMEN
Predictions are constantly generated from diverse sources to optimize cognitive functions in the ever-changing environment. However, the neural origin and generation process of top-down induced prediction remain elusive. We hypothesized that motor-based and memory-based predictions are mediated by distinct descending networks from motor and memory systems to the sensory cortices. Using functional magnetic resonance imaging (fMRI) and a dual imagery paradigm, we found that motor and memory upstream systems activated the auditory cortex in a content-specific manner. Moreover, the inferior and posterior parts of the parietal lobe differentially relayed predictive signals in motor-to-sensory and memory-to-sensory networks. Dynamic causal modeling of directed connectivity revealed selective enabling and modulation of connections that mediate top-down sensory prediction and ground the distinctive neurocognitive basis of predictive processing.
Asunto(s)
Corteza Auditiva , Mapeo Encefálico , Lóbulo Parietal/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética/métodos , Corteza Auditiva/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagenRESUMEN
Cross-sectioning is a shape understanding task where the participants must infer and interpret the spatial features of three-dimensional (3D) solids by depicting their internal two-dimensional (2D) arrangement. An increasing body of research provides evidence of the crucial role of sensorimotor experience in acquiring these complex geometrical concepts. Here, we focused on how cross-sectioning ability emerges in young children and the influence of multisensory visuo-haptic experience in geometrical learning through two experiments. In Experiment 1, we compared the 3D printed version of the Santa Barbara Solids Test (SBST) with its classical paper version; in Experiment 2, we contrasted the children's performance in the SBST before and after the visual or visuo-haptic experience. In Experiment 1, we did not identify an advantage in visualizing 3D shapes over the classical 2D paper test. In contrast, in Experiment 2, we found that children who had the experience of a combination of visual and tactile information during the exploration phase improved their performance in the SBST compared with children who were limited to visual exploration. Our study demonstrates how practicing novel multisensory strategies improves children's understanding of complex geometrical concepts. This outcome highlights the importance of introducing multisensory experience in educational training and the need to make way for developing new technologies that could improve learning abilities in children.
Asunto(s)
Percepción del Tacto , Percepción Visual , Niño , Humanos , Preescolar , Tecnología Háptica , Tacto , AprendizajeRESUMEN
Several lines of research have shown that performing movements while learning new information aids later retention of that information, compared to learning by perception alone. For instance, articulated words are more accurately remembered than words that are silently read (the production effect). A candidate mechanism for this movement-enhanced encoding, sensorimotor prediction, assumes that acquired sensorimotor associations enable movements to prime associated percepts and hence improve encoding. Yet it is still unknown how the extent of prior sensorimotor experience influences the benefits of movement on encoding. The current study addressed this question by examining whether the production effect is modified by prior language experience. Does the production effect reduce or persist in a second language (L2) compared to a first language (L1)? Two groups of unbalanced bilinguals, German (L1) - English (L2) bilinguals (Experiment 1) and English (L1) - German (L2) bilinguals (Experiment 2), learned lists of German and English words by reading the words silently or reading the words aloud, and they subsequently performed recognition tests. Both groups showed a pronounced production effect (higher recognition accuracy for spoken compared to silently read words) in the first and second languages. Surprisingly, the production effect was greater in the second languages compared to the first languages, across both bilingual groups. We discuss interpretations based on increased phonological encoding, increased effort or attention, or both, when reading aloud in a second language.
Asunto(s)
Multilingüismo , Lectura , Humanos , Adulto , Adulto Joven , Reconocimiento en Psicología/fisiología , Femenino , Masculino , PsicolingüísticaRESUMEN
Coordination of behavior for cooperative performances often relies on linkages mediated by sensory cues exchanged between participants. How neurophysiological responses to sensory information affect motor programs to coordinate behavior between individuals is not known. We investigated how plain-tailed wrens (Pheugopedius euophrys) use acoustic feedback to coordinate extraordinary duet performances in which females and males rapidly take turns singing. We made simultaneous neurophysiological recordings in a song control area "HVC" in pairs of singing wrens at a field site in Ecuador. HVC is a premotor area that integrates auditory feedback and is necessary for song production. We found that spiking activity of HVC neurons in each sex increased for production of its own syllables. In contrast, hearing sensory feedback produced by the bird's partner decreased HVC activity during duet singing, potentially coordinating HVC premotor activity in each bird through inhibition. When birds sang alone, HVC neurons in females but not males were inhibited by hearing the partner bird. When birds were anesthetized with urethane, which antagonizes GABAergic (γ-aminobutyric acid) transmission, HVC neurons were excited rather than inhibited, suggesting a role for GABA in the coordination of duet singing. These data suggest that HVC integrates information across partners during duets and that rapid turn taking may be mediated, in part, by inhibition.
Asunto(s)
Pájaros Cantores/fisiología , Vocalización Animal/fisiología , Animales , Femenino , MasculinoRESUMEN
BACKGROUND: Neural adaptions in response to sensorimotor tasks are impaired in those with untreated, recurrent mild-to-moderate neck pain (subclinical neck pain (SCNP)), due to disordered central processing of afferent information (e.g., proprioception). Neural adaption to force modulation, a sensorimotor skill reliant on accurate proprioception, is likely to be impaired in those with SCNP. This study examined changes in somatosensory evoked potential (SEP) peak amplitudes following the acquisition of a novel force matching tracking task (FMTT) in those with SCNP compared to non-SCNP. METHODS: 40 (20 female (F) & 20 male (M); average age (standard deviation, SD): 21.6 (3.01)) right-handed participants received controlled electrical stimulation at 2.47 Hz and 4.98 Hz (averaged 1000 sweeps/frequency) over the right-median nerve, to elicit SEPs before and after FMTT acquisition. Participants used their right thumb to match a series of force profiles that were calibrated to their right thumb (abductor pollicis brevis muscle) strength. To determine if motor learning was impacted, retention was assessed 24 to 48 hours later. Outliers were removed before running independent t-tests on normalized SEP peak amplitudes, and repeated measures analysis of variance (ANOVA) with planned contrasts on absolute and normalized motor performance accuracy. Benjamini-hochberg test was used to correct for multiple independent SEP comparisons. RESULTS: SEP peaks: N18 (t(29.058) = 2.031, p = 0.026), N20 (t(35) = -5.460, p < 0.001), and P25 (t(33) = -2.857, p = 0.004) had group differences. Motor performance: Absolute error (n = 38) had a main effect of time, and significant pre-and post-acquisition contrast for time (both p < 0.001). CONCLUSIONS: Group differences in the olivary-cerebellar pathway (N18), and cortical processing at the somatosensory cortex (N20 and P25), suggests that SCNP alters cortical and cerebellar processing compared to non-SCNP in response to FMTT acquisition. The sensory-motor integration differences in the SCNP group suggests that those with SCNP may rely more on feedback loops for discrete sensorimotor tasks dependent on proprioception. Early SEP changes may be used as a marker for altered neuroplasticity in the context of motor skill acquisition of a novel discrete FMTT in those with SCNP.
Asunto(s)
Potenciales Evocados Somatosensoriales , Dolor de Cuello , Humanos , Masculino , Femenino , Potenciales Evocados Somatosensoriales/fisiología , Destreza Motora , Músculo Esquelético/inervación , Mano , Estimulación Eléctrica , Corteza Somatosensorial/fisiologíaRESUMEN
In daily life, sensorimotor integration processes are fundamental for many cognitive operations. The pursuit-tracking paradigm is an ecological and valid paradigm to examine sensorimotor integration processes in a more complex environment than many established tasks that assess simple motor responses. However, the analysis of pursuit-tracking performance is complicated, and parameters quantified to examine performance are sometimes ambiguous regarding their interpretation. We introduce an open-source algorithm (TRACK) to calculate a new tracking error metric, the spatial error, based on the identification of the intended target position for the respective cursor position. The identification is based on assigning cursor and target direction changes to each other as key events, based on the assumptions of similarity and proximity. By applying our algorithm to pursuit-tracking data, beyond replication of known effects such as learning or practice effects, we show a higher precision of the spatial tracking error, i.e., it fits our behavioral data better than the temporal tracking error and thus provides new insights and parameters for the investigation of pursuit-tracking behavior. Our work provides an important step towards fully utilizing the potential of pursuit-tracking tasks for research on sensorimotor integration processes.
Asunto(s)
Aprendizaje , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Aprendizaje/fisiología , Estimulación Luminosa , Seguimiento Ocular UniformeRESUMEN
Objective: To investigate the effect of a 16-week Tai Chi practice on strength, tactile sensation, kinesthesia, and static postural control among older adults of different age groups. Methods: This is a quasi-experimental study. Thirteen participants aged 60-69 years (60-69yr), 11 aged 70-79 years (70-79yr), and 13 aged 80-89 years (80-89yr) completed 16 weeks of 24-form Tai Chi practice. Their ankle and hip peak torque, tactile sensation, ankle and knee kinesthesia, and the root mean square of the center of pressure (Cop-RMS) were measured before (week 0) and after (week 17) practice. Results: 80-89yr showed less ankle plantar/dorsiflexion and hip abduction peak torques (p = 0.003, p < 0.001, p = 0.001), and a greater ankle plantar/dorsiflexion kinesthesia (p < 0.001, p = 0.002) than 60-69yr and 70-79yr. Greater ankle plantar/dorsiflexion and hip abduction torques (p = 0.011, p < 0.001, p = 0.045), improved arch and heel tactile sensation (p = 0.040, p = 0.009), and lower knee flexion/extension kinesthesia (p < 0.001, p = 0.044) were observed at week 17. The significant group*practice interaction for the fifth metatarsal head tactile sensation (p = 0.027), ankle plantar/dorsiflexion kinesthesia (p < 0.001, p = 0.004), and the CoP-RMS in the mediolateral direction (p = 0.047) only in 80-89yr revealed greater improvement at week 17. Conclusion: Tai Chi practice increased strength, tactile sensation, kinesthesia, and static postural control among older adults. Tai Chi practice improved tactile, kinesthesia sensations, and static postural control among older adults over 80, who presented with worse strength and kinesthesia than their younger counterparts. Tai Chi practice offers a safe exercise option for those aged over 80 to encourage improvements in sensorimotor control.