Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Intervalo de año de publicación
1.
EMBO J ; 41(1): e108843, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981518

RESUMEN

Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.


Asunto(s)
Cilios/metabolismo , Septinas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/citología , Transducción de Señal
2.
J Cell Sci ; 136(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815088

RESUMEN

Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.


Asunto(s)
Citoesqueleto , Septinas , Septinas/metabolismo , Citoesqueleto/metabolismo , Membrana Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(50): e2202803119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36475946

RESUMEN

Cellular morphogenesis and processes such as cell division and migration require the coordination of the microtubule and actin cytoskeletons. Microtubule-actin crosstalk is poorly understood and largely regarded as the capture and regulation of microtubules by actin. Septins are filamentous guanosine-5'-triphosphate (GTP) binding proteins, which comprise the fourth component of the cytoskeleton along microtubules, actin, and intermediate filaments. Here, we report that septins mediate microtubule-actin crosstalk by coupling actin polymerization to microtubule lattices. Superresolution and platinum replica electron microscopy (PREM) show that septins localize to overlapping microtubules and actin filaments in the growth cones of neurons and non-neuronal cells. We demonstrate that recombinant septin complexes directly crosslink microtubules and actin filaments into hybrid bundles. In vitro reconstitution assays reveal that microtubule-bound septins capture and align stable actin filaments with microtubules. Strikingly, septins enable the capture and polymerization of growing actin filaments on microtubule lattices. In neuronal growth cones, septins are required for the maintenance of the peripheral actin network that fans out from microtubules. These findings show that septins directly mediate microtubule interactions with actin filaments, and reveal a mechanism of microtubule-templated actin growth with broader significance for the self-organization of the cytoskeleton and cellular morphogenesis.


Asunto(s)
Actinas , Septinas , Microtúbulos
4.
J Biol Chem ; 299(9): 105084, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495111

RESUMEN

Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.


Asunto(s)
Dineínas , Cinesinas , Proteínas Asociadas a Microtúbulos , Septinas , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Septinas/metabolismo , Células COS , Células HEK293 , Humanos , Animales , Chlorocebus aethiops , Transporte de Proteínas
5.
J Cell Biochem ; : e30660, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324363

RESUMEN

Septins are a class of proteins with diverse and vital roles in cell biology. Structurally, they form hetero-oligomeric complexes and assemble into filaments, contributing to the organization of cells. These filaments act as scaffolds, aiding in processes like membrane remodeling, cytokinesis, and cell motility. Functionally, septins are essential to cell division, playing essential roles in cytokinetic furrow formation and maintaining the structural integrity of the contractile ring. They also regulate membrane trafficking and help organize intracellular organelles. In terms of physiology, septins facilitate cell migration, phagocytosis, and immune responses by maintaining membrane integrity and influencing cytoskeletal dynamics. Septin dysfunction is associated with pathophysiological conditions. Mutations in septin genes have been linked to neurodegenerative diseases, such as hereditary spastic paraplegias, underscoring their significance in neuronal function. Septins also play a role in cancer and infectious diseases, making them potential targets for therapeutic interventions. Septins serve as pivotal components of intracellular signaling networks, engaging with diverse proteins like kinases and phosphatases. By modulating the activity of these molecules, septins regulate vital cellular pathways. This integral role in signaling makes septins central to orchestrating cellular responses to environmental stimuli. This review mainly focuses on the human septins, their structural composition, regulatory functions, and implication in pathophysiological conditions underscores their importance in fundamental cellular biology. Moreover, their potential as therapeutic targets across various diseases further emphasizes their significance.

6.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33912961

RESUMEN

Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.


Asunto(s)
Aspergillus nidulans , Septinas , Aspergillus nidulans/metabolismo , Pared Celular/metabolismo , Metabolismo de los Lípidos , Septinas/genética , Septinas/metabolismo , Esfingolípidos/metabolismo
7.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347092

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diferenciación Celular , Retroalimentación , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350965

RESUMEN

Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.


Asunto(s)
Citoesqueleto , Septinas , Actinas , Animales , Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Septinas/genética , Septinas/metabolismo
9.
J Neuroinflammation ; 20(1): 88, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997937

RESUMEN

BACKGROUND: Septins are cytoskeletal proteins with filament forming capabilities, which have multiple roles during cell division, cellular polarization, morphogenesis, and membrane trafficking. Autoantibodies against septin-5 are associated with non-paraneoplastic cerebellar ataxia, and autoantibodies against septin-7 with encephalopathy with prominent neuropsychiatric features. Here, we report on newly identified autoantibodies against septin-3 in patients with paraneoplastic cerebellar ataxia. We also propose a strategy for anti-septin autoantibody determination. METHODS: Sera from three patients producing similar immunofluorescence staining patterns on cerebellar and hippocampal sections were subjected to immunoprecipitation followed by mass spectrometry. The identified candidate antigens, all of which were septins, were expressed recombinantly in HEK293 cells either individually, as complexes, or combinations missing individual septins, for use in recombinant cell-based indirect immunofluorescence assays (RC-IIFA). Specificity for septin-3 was further confirmed by tissue IIFA neutralization experiments. Finally, tumor tissue sections were analyzed immunohistochemically for septin-3 expression. RESULTS: Immunoprecipitation with rat cerebellum lysate revealed septin-3, -5, -6, -7, and -11 as candidate target antigens. Sera of all three patients reacted with recombinant cells co-expressing septin-3/5/6/7/11, while none of 149 healthy control sera was similarly reactive. In RC-IIFAs the patient sera recognized only cells expressing septin-3, individually and in complexes. Incubation of patient sera with five different septin combinations, each missing one of the five septins, confirmed the autoantibodies' specificity for septin-3. The tissue IIFA reactivity of patient serum was abolished by pre-incubation with HEK293 cell lysates overexpressing the septin-3/5/6/7/11 complex or septin-3 alone, but not with HEK293 cell lysates overexpressing septin-5 as control. All three patients had cancers (2 × melanoma, 1 × small cell lung cancer), presented with progressive cerebellar syndromes, and responded poorly to immunotherapy. Expression of septin-3 was demonstrated in resected tumor tissue available from one patient. CONCLUSIONS: Septin-3 is a novel autoantibody target in patients with paraneoplastic cerebellar syndromes. Based on our findings, RC-IIFA with HEK293 cells expressing the septin-3/5/6/7/11 complex may serve as a screening tool to investigate anti-septin autoantibodies in serological samples with a characteristic staining pattern on neuronal tissue sections. Autoantibodies against individual septins can then be confirmed by RC-IIFA expressing single septins.


Asunto(s)
Autoanticuerpos , Autoinmunidad , Ataxia Cerebelosa , Animales , Humanos , Ratas , Ataxia Cerebelosa/inmunología , Células HEK293 , Neuronas/metabolismo
10.
Biol Chem ; 404(1): 1-13, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36423333

RESUMEN

The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.


Asunto(s)
Citoesqueleto , Septinas , Animales , Microtúbulos , Nucleótidos , Guanosina Trifosfato , Mamíferos
11.
Fungal Genet Biol ; 160: 103697, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472450

RESUMEN

Cryptococcus neoformans, a basidiomycete yeast, causes lethal meningitis in immunocompromised individuals. The ability of C. neoformans to proliferate at 37°C is essential for virulence. We identified anillin-like protein, CnBud4, as essential for proliferation of C. neoformans at 37°C and for virulence in a heterologous host Galleria mellonella at 25°C. C. neoformans cells lacking CnBud4 were inviable at 25°C in the absence of active calcineurin and were hypersensitive to membrane stress and an anti-fungal agent fluconazole, phenotypes previously described for C. neoformans mutants lacking septins. CnBud4 localized to the mother-bud neck during cytokinesis in a septin-dependent manner. In the absence of CnBud4, septin complex failed to transition from a collar-like single ring to the double ring during cytokinesis. In an ascomycete yeast, Saccharomyces cerevisiae, the anillin-like homologue ScBud4 participates in the organization of the septin ring at the mother-bud neck and plays an important role in specifying location for new bud emergence, known as axial budding pattern. In contrast to their role in S. cerevisiae, neither septins nor CnBud4 were needed to direct the position of the new bud in C. neoformans, suggesting that this function is not conserved in basidiomycetous yeasts. Our data suggest that the requirement of CnBud4 for growth at 37°C and pathogenicity in C. neoformans is based on its conserved role in septin complex organization.


Asunto(s)
Temperatura Corporal , Proteínas Contráctiles , Cryptococcus neoformans , Criptococosis/microbiología , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Interacciones Microbiota-Huesped , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Septinas/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(43): 21789-21799, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597735

RESUMEN

Bacterial spores are dormant cells that are encased in a thick protein shell, the "coat," which participates in protecting the organism's DNA from environmental insults. The coat is composed of dozens of proteins that assemble in an orchestrated fashion during sporulation. In Bacillus subtilis, 2 proteins initiate coat assembly: SpoVM, which preferentially binds to micron-scale convex membranes and marks the surface of the developing spore as the site for coat assembly; and SpoIVA, a structural protein recruited by SpoVM that uses ATP hydrolysis to drive its irreversible polymerization around the developing spore. Here, we describe the initiation of coat assembly by SpoVM and SpoIVA. Using single-molecule fluorescence microscopy in vivo in sporulating cells and in vitro on synthetic spores, we report that SpoVM's localization is primarily driven by a lower off-rate on membranes of preferred curvature in the absence of other coat proteins. Recruitment and polymerization of SpoIVA results in the entrapment of SpoVM on the forespore surface. Using experimentally derived reaction parameters, we show that a 2-dimensional ratchet model can describe the interdependent localization dynamics of SpoVM and SpoIVA, wherein SpoVM displays a longer residence time on the forespore surface, which favors recruitment of SpoIVA to that location. Localized SpoIVA polymerization in turn prevents further sampling of other membranes by prelocalized SpoVM molecules. Our model therefore describes the dynamics of structural proteins as they localize and assemble at the correct place and time within a cell to form a supramolecular complex.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes , Microscopía Fluorescente , Esporas Bacterianas/crecimiento & desarrollo
13.
Proteomics ; 21(19): e2100155, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34409731

RESUMEN

Septins are a family of multimeric GTP-binding proteins, which are abnormally expressed in cancer. Septin 9 (SEPT9) is an essential and ubiquitously expressed septin with multiple isoforms, which have differential expression patterns and effects in breast cancer cells. It is unknown, however, if SEPT9 isoforms associate with different molecular networks and functions. Here, we performed a proteomic screen in MCF-7 breast cancer cells to identify the interactome of GFP-SEPT9 isoforms 1, 4 and 5, which vary significantly in their N-terminal extensions. While all three isoforms associated with SEPT2 and SEPT7, the truncated SEPT9_i4 and SEPT9_i5 interacted with septins of the SEPT6 group more promiscuously than SEPT9_i1, which bound predominately SEPT8. Spatial mapping and functional clustering of non-septin partners showed isoform-specific differences in interactions with proteins of distinct subcellular organelles (e.g., nuclei, centrosomes, cilia) and functions such as cell signalling and ubiquitination. The interactome of the full length SEPT9_i1 was more enriched in cytoskeletal regulators, while the truncated SEPT9_i4 and SEPT9_i5 exhibited preferential and isoform-specific interactions with nuclear, signalling, and ubiquitinating proteins. These data provide evidence for isoform-specific interactions, which arise from truncations in the N-terminal extensions of SEPT9, and point to novel roles in the pathogenesis of breast cancer.


Asunto(s)
Neoplasias de la Mama , Septinas , Femenino , Perfilación de la Expresión Génica , Humanos , Células MCF-7 , Isoformas de Proteínas/genética , Proteómica , Septinas/genética , Septinas/metabolismo
14.
Fungal Genet Biol ; 154: 103562, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33882359

RESUMEN

Magnaporthe oryzae is the causal agent of rice blast disease, the most widespread and serious disease of cultivated rice. Live cell imaging and quantitative 4D image analysis have provided new insight into the mechanisms by which the fungus infects host cells and spreads rapidly in plant tissue. In this video review article, we apply live cell imaging approaches to understanding the cell and developmental biology of rice blast disease. To gain entry to host plants, M. oryzae develops a specialised infection structure called an appressorium, a unicellular dome-shaped cell which generates enormous turgor, translated into mechanical force to rupture the leaf cuticle. Appressorium development is induced by perception of the hydrophobic leaf surface and nutrient deprivation. Cargo-independent autophagy in the three-celled conidium, controlled by cell cycle regulation, is essential for appressorium morphogenesis. Appressorium maturation involves turgor generation and melanin pigment deposition in the appressorial cell wall. Once a threshold of turgor has been reached, this triggers re-polarisation which requires regulated generation of reactive oxygen species, to facilitate septin GTPase-dependent cytoskeletal re-organisation and re-polarisation of the appressorium to form a narrow, rigid penetration peg. Infection of host tissue requires a further morphogenetic transition to a pseudohyphal-type of growth within colonised rice cells. At the same time the fungus secretes an arsenal of effector proteins to suppress plant immunity. Many effectors are secreted into host cells directly, which involves a specific secretory pathway and a specialised structure called the biotrophic interfacial complex. Cell-to-cell spread of the fungus then requires development of a specialised structure, the transpressorium, that is used to traverse pit field sites, allowing the fungus to maintain host cell membrane integrity as new living plant cells are invaded. Thereafter, the fungus rapidly moves through plant tissue and host cells begin to die, as the fungus switches to necrotrophic growth and disease symptoms develop. These morphogenetic transitions are reviewed in the context of live cell imaging studies.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/crecimiento & desarrollo , Micosis/microbiología , Oryza/microbiología , Células Vegetales/inmunología , Enfermedades de las Plantas/microbiología , Pared Celular/metabolismo
15.
Yeast ; 38(1): 90-101, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238051

RESUMEN

How nonspore haploid Saccharomyces cells choose sites of budding and polarize towards pheromone signals in order to mate has been a subject of intense study. Unlike nonspore haploids, sibling spores produced via meiosis and sporulation by a diploid cell are physically interconnected and encased in a sac derived from the old cell wall of the diploid, called the ascus. Nonspore haploids bud adjacent to previous sites of budding, relying on stable cortical landmarks laid down during prior divisions, but because spore membranes are made de novo, it was assumed that, as is known for fission yeast, Saccharomyces spores break symmetry and polarize at random locations. Here, we show that this assumption is incorrect: Saccharomyces cerevisiae spores are born prepolarized to outgrow, prior to budding or mating, away from interspore bridges. Consequently, when spores bud within an intact ascus, their buds locally penetrate the ascus wall, and when they mate, the resulting zygotes adopt a unique morphology reflective of repolarization towards pheromone. Long-lived cortical foci containing the septin Cdc10 mark polarity sites, but the canonical bud site selection programme is dispensable for spore polarity, thus the origin and molecular composition of these landmarks remain unknown. These findings demand further investigation of previously overlooked mechanisms of polarity establishment and local cell wall digestion and highlight how a key step in the Saccharomyces life cycle has been historically neglected.


Asunto(s)
Pared Celular/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , GTP Fosfohidrolasas/genética , Meiosis/genética , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética , Septinas/metabolismo , Esporas Fúngicas/fisiología
16.
Cell Microbiol ; 22(4): e13173, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32185906

RESUMEN

Investigation of cytoskeleton during bacterial infection has significantly contributed to both cell and infection biology. Bacterial pathogens Listeria monocytogenes and Shigella flexneri are widely recognised as paradigms for investigation of the cytoskeleton during bacterial entry, actin-based motility, and cell-autonomous immunity. At the turn of the century, septins were a poorly understood component of the cytoskeleton mostly studied in the context of yeast cell division and human cancer. In 2002, a screen performed in the laboratory of Pascale Cossart identified septin family member MSF (MLL septin-like fusion, now called SEPT9) associated with L. monocytogenes entry into human epithelial cells. These findings inspired the investigation of septins during L. monocytogenes and S. flexneri infection at the Institut Pasteur, illuminating important roles for septins in host-microbe interactions. In this review, we revisit the history of septin biology and bacterial infection, and discuss how the comparative study of L. monocytogenes and S. flexneri has been instrumental to understand septin roles in cellular homeostasis and host defence.


Asunto(s)
Infecciones Bacterianas/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/patogenicidad , Septinas/metabolismo , Shigella flexneri/patogenicidad , Actinas/metabolismo , Autofagia , División Celular , Citoesqueleto , Células Epiteliales/microbiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Septinas/historia
17.
Cell Mol Life Sci ; 77(24): 5243-5258, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32034429

RESUMEN

Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia. However, an exact understanding of the affected synaptic functions that predispose to complement-mediated synapse elimination is lacking. Therefore, we conducted systematic proteomic examinations on synaptosomes prepared from an amyloidogenic mouse model of Alzheimer's disease (APP/PS1). Synaptic fractions were separated according to the presence of the C1q-tag using fluorescence-activated synaptosome sorting and subjected to proteomic comparisons. The results raised the decline of mitochondrial functions in the C1q-tagged synapses of APP/PS1 mice based on enrichment analyses, which was verified using flow cytometry. Additionally, proteomics results revealed extensive alterations in the level of septin protein family members, which are known to dynamically form highly organized pre- and postsynaptic supramolecular structures, thereby affecting synaptic transmission. High-resolution microscopy investigations demonstrated that synapses with considerable amounts of septin-3 and septin-5 show increased accumulation of C1q in APP/PS1 mice compared to the wild-type ones. Moreover, a strong positive correlation was apparent between synaptic septin-3 levels and C1q deposition as revealed via flow cytometry and confocal microscopy examinations. In sum, our results imply that deterioration of synaptic mitochondrial functions and alterations in the organization of synaptic septins are associated with complement-dependent synapse loss in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Proteoma/genética , Sinapsis/genética , Enfermedad de Alzheimer/patología , Amiloide/toxicidad , Proteínas Amiloidogénicas/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Ratones , Microglía/metabolismo , Microglía/patología , Mitocondrias/genética , Mitocondrias/patología , Oligopéptidos/genética , Placa Amiloide/genética , Placa Amiloide/patología , Septinas/genética , Sinapsis/metabolismo , Sinapsis/patología , Sinaptosomas/metabolismo , Sinaptosomas/patología
18.
Mol Cell Neurosci ; 105: 103492, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32294508

RESUMEN

Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.


Asunto(s)
Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Neuronas/citología , Transporte de Proteínas/fisiología , Animales , Dendritas/metabolismo , Aparato de Golgi/metabolismo , Humanos
19.
J Cell Sci ; 131(1)2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29326311

RESUMEN

The actin and microtubule cytoskeletons comprise a variety of networks with distinct architectures, dynamics and protein composition. A fundamental question in eukaryotic cell biology is how these networks are spatially and temporally controlled, so they are positioned in the right intracellular places at the right time. While significant progress has been made in understanding the self-assembly of actin and microtubule networks, less is known about how they are patterned and regulated in a site-specific manner. In mammalian systems, septins are a large family of GTP-binding proteins that multimerize into higher-order structures, which associate with distinct subsets of actin filaments and microtubules, as well as membranes of specific curvature and lipid composition. Recent studies have shed more light on how septins interact with actin and microtubules, and raised the possibility that the cytoskeletal topology of septins is determined by their membrane specificity. Importantly, new functions have emerged for septins regarding the generation, maintenance and positioning of cytoskeletal networks with distinct organization and biochemical makeup. This Review presents new and past findings, and discusses septins as a unique regulatory module that instructs the local differentiation and positioning of distinct actin and microtubule networks.


Asunto(s)
Actinas/metabolismo , Células Eucariotas/metabolismo , Microtúbulos/metabolismo , Septinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células Eucariotas/fisiología , Humanos
20.
Annu Rev Microbiol ; 69: 487-503, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488282

RESUMEN

Polarized growth is critical for the development and maintenance of diverse organisms and tissues but particularly so in fungi, where nutrient uptake, communication, and reproduction all rely on cell asymmetries. To achieve polarized growth, fungi spatially organize both their cytosol and cortical membranes. Septins, a family of GTP-binding proteins, are key regulators of spatial compartmentalization in fungi and other eukaryotes. Septins form higher-order structures on fungal plasma membranes and are thought to contribute to the generation of cell asymmetries by acting as molecular scaffolds and forming diffusional barriers. Here we discuss the links between septins and polarized growth and consider molecular models for how septins contribute to cellular asymmetry in fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/citología , Hongos/crecimiento & desarrollo , Septinas/metabolismo , Membrana Celular/metabolismo , Hongos/clasificación , Hongos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA