Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(22): 4956-4973.e21, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37852260

RESUMEN

The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.


Asunto(s)
Anafilatoxinas , Receptores de Complemento , Transducción de Señal , Anafilatoxinas/metabolismo , Complemento C3a/metabolismo , Inmunidad Innata , Receptores de Complemento/metabolismo , Humanos , Animales , Ratones
2.
Trends Biochem Sci ; 49(4): 280-282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38233283

RESUMEN

Recent advances in cryo-electron microscopy (Cryo-EM) have revolutionized our understanding of the complement C5a/C3a receptors that are crucial in inflammation. A recent report by Yadav et al. has elucidated the activation, ligand binding, selectivity, and signaling bias of these receptors, thereby enhancing structure-guided drug discovery. This paves the way for more effective anti-inflammatory therapies that target these receptors with unprecedented precision.


Asunto(s)
Anafilatoxinas , Complemento C5a , Anafilatoxinas/química , Anafilatoxinas/metabolismo , Complemento C5a/metabolismo , Complemento C3a/metabolismo , Microscopía por Crioelectrón , Receptores de Complemento/metabolismo
3.
Annu Rev Physiol ; 86: 1-25, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029388

RESUMEN

The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.


Asunto(s)
Analgésicos Opioides , Transducción de Señal , Humanos , Analgésicos Opioides/efectos adversos , Tolerancia a Medicamentos
4.
Mol Cell ; 75(1): 53-65.e7, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31103421

RESUMEN

The M2 muscarinic acetylcholine receptor (M2R) is a prototypical GPCR that plays important roles in regulating heart rate and CNS functions. Crystal structures provide snapshots of the M2R in inactive and active states, but the allosteric link between the ligand binding pocket and cytoplasmic surface remains poorly understood. Here we used solution NMR to examine the structure and dynamics of the M2R labeled with 13CH3-ε-methionine upon binding to various orthosteric and allosteric ligands having a range of efficacy for both G protein activation and arrestin recruitment. We observed ligand-specific changes in the NMR spectra of 13CH3-ε-methionine probes in the M2R extracellular domain, transmembrane core, and cytoplasmic surface, allowing us to correlate ligand structure with changes in receptor structure and dynamics. We show that the M2R has a complex energy landscape in which ligands with different efficacy profiles stabilize distinct receptor conformations.


Asunto(s)
Acetilcolina/química , Carbacol/química , Isoxazoles/química , Pilocarpina/química , Piridinas/química , Compuestos de Amonio Cuaternario/química , Receptor Muscarínico M2/química , Tiadiazoles/química , Acetilcolina/metabolismo , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Carbacol/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Isoxazoles/metabolismo , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Pilocarpina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piridinas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinámica , Tiadiazoles/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33846240

RESUMEN

Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than ß-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.


Asunto(s)
Regulación Alostérica/fisiología , Dolor/tratamiento farmacológico , Receptores Opioides mu/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Analgésicos , Analgésicos Opioides/farmacología , Animales , Células CHO , Cricetulus , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Morfina , Antagonistas de Narcóticos , Manejo del Dolor/métodos , Prueba de Estudio Conceptual , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/efectos de los fármacos
6.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108518

RESUMEN

The selectivity of drugs for G protein-coupled receptor (GPCR) signaling pathways is crucial for their therapeutic efficacy. Different agonists can cause receptors to recruit effector proteins at varying levels, thus inducing different signaling responses, called signaling bias. Although several GPCR-biased drugs are currently being developed, only a limited number of biased ligands have been identified regarding their signaling bias for the M1 muscarinic acetylcholine receptor (M1mAChR), and the mechanism is not yet well understood. In this study, we utilized bioluminescence resonance energy transfer (BRET) assays to compare the efficacy of six agonists in inducing Gαq and ß-arrestin2 binding to M1mAChR. Our findings reveal notable variations in agonist efficacy in the recruitment of Gαq and ß-arrestin2. Pilocarpine preferentially promoted the recruitment of ß-arrestin2 (∆∆RAi = -0.5), while McN-A-343 (∆∆RAi = 1.5), Xanomeline (∆∆RAi = 0.6), and Iperoxo (∆∆RAi = 0.3) exhibited a preference for the recruitment of Gαq. We also used commercial methods to verify the agonists and obtained consistent results. Molecular docking revealed that certain residues (e.g., Y404, located in TM7 of M1mAChR) could play crucial roles in Gαq signaling bias by interacting with McN-A-343, Xanomeline, and Iperoxo, whereas other residues (e.g., W378 and Y381, located in TM6) contributed to ß-arrestin recruitment by interacting with Pilocarpine. The preference of activated M1mAChR for different effectors may be due to significant conformational changes induced by biased agonists. By characterizing bias towards Gαq and ß-arrestin2 recruitment, our study provides insights into M1mAChR signaling bias.


Asunto(s)
Acetilcolina , Receptor Muscarínico M1 , Humanos , beta-Arrestinas/metabolismo , Simulación del Acoplamiento Molecular , Receptor Muscarínico M1/metabolismo , Cloruro de (4-(m-Clorofenilcarbamoiloxi)-2-butinil)trimetilamonio , Pilocarpina/farmacología , Proteínas de Unión al GTP/metabolismo , Arrestina beta 2/metabolismo , beta-Arrestina 1/metabolismo , Transferencia de Energía , Células HEK293
7.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887157

RESUMEN

Signaling bias is a promising characteristic of G protein-coupled receptors (GPCRs) as it provides the opportunity to develop more efficacious and safer drugs. This is because biased ligands can avoid the activation of pathways linked to side effects whilst still producing the desired therapeutic effect. In this respect, a deeper understanding of receptor dynamics and implicated allosteric communication networks in signaling bias can accelerate the research on novel biased drug candidates. In this review, we aim to provide an overview of computational methods and techniques for studying allosteric communication and signaling bias in GPCRs. This includes (i) the detection of allosteric communication networks and (ii) the application of network theory for extracting relevant information pipelines and highly communicated sites in GPCRs. We focus on the most recent research and highlight structural insights obtained based on the framework of allosteric communication networks and network theory for GPCR signaling bias.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Regulación Alostérica , Sitio Alostérico , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
8.
Cell Mol Life Sci ; 77(22): 4675-4691, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31919571

RESUMEN

Functionally selective ligands to address specific cellular responses downstream of G protein-coupled receptors (GPCR) open up new possibilities for therapeutics. We designed and characterized novel subtype- and pathway-selective ligands. Substitution of position Q34 of neuropeptide Y to glycine (G34-NPY) results in unprecedented selectivity over all other YR subtypes. Moreover, this ligand displays a significant bias towards activation of the Gi/o pathway over recruitment of arrestin-3. Notably, no bias is observed for an established Y1R versus Y2R selective ligand carrying a proline at position 34 (F7,P34-NPY). Next, we investigated the spatio-temporal signaling at the Y1R and demonstrated that G protein-biased ligands promote a prolonged localization at the cell membrane, which leads to enhanced G protein signaling, while endosomal receptors do not contribute to cAMP signaling. Thus, spatial components are critical for the signaling of the Y1R that can be modulated by tailored ligands and represent a novel mode for biased pathways.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Neuropéptido Y/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Arrestinas/metabolismo , Bovinos , Línea Celular , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligandos , Prolina/metabolismo , Unión Proteica/fisiología , Transducción de Señal/fisiología
9.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576254

RESUMEN

A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Humanos , Concentración 50 Inhibidora , Isoxazoles/química , Conformación Molecular , Simulación de Dinámica Molecular , Oxotremorina/química , Unión Proteica , Compuestos de Amonio Cuaternario/química , Proteínas Recombinantes de Fusión/química
10.
Biochem J ; 475(23): 3813-3826, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30409826

RESUMEN

Biased ligands of G protein-coupled receptors (GPCRs) may have improved therapeutic benefits and safety profiles. However, the molecular mechanism of GPCR biased signaling remains largely unknown. Using apelin receptor (APJ) as a model, we systematically investigated the potential effects of amino acid residues around the orthosteric binding site on biased signaling. We discovered that a single residue mutation I109A (I1093.32) in the transmembrane domain 3 (TM3) located in the deep ligand-binding pocket was sufficient to convert a balanced APJ into a G protein signaling biased receptor. APJ I109A mutant receptor retained full capabilities in ligand binding and G protein activation, but was defective in GRK recruitment, ß-arrestin recruitment, and downstream receptor-mediated ERK activation. Based on molecular dynamics simulations, we proposed a molecular mechanism for biased signaling of I109A mutant receptor. We postulate that due to the extra space created by I109A mutation, the phenyl group of the last residue (Phe-13) of apelin rotates down and initiates a cascade of conformational changes in TM3. Phe-13 formed a new cluster of hydrophobic interactions with the sidechains of residues in TM3, including F1103.33 and M1133.36, which stabilizes the mutant receptor in a conformation favoring biased signaling. Interruption of these stabilizing interactions by double mutation F110A/I109A or M113A/I109A largely restored the ß-arrestin-mediated signaling. Taken together, we describe herein the discovery of a biased APJ mutant receptor and provide detailed molecular insights into APJ signaling selectivity, facilitating the discovery of novel therapeutics targeting APJ.


Asunto(s)
Aminoácidos/química , Receptores de Apelina/química , Dominios Proteicos , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Apelina/química , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Sitios de Unión/genética , Línea Celular Tumoral , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
Methods ; 92: 51-63, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25986936

RESUMEN

Ligands possessing different physico-chemical structures productively interact with G protein-coupled receptors generating distinct downstream signaling events due to their abilities to activate/select idiosyncratic receptor entities ('receptorsomes') from the full spectrum of potential receptor partners. We have employed multiple novel informatic approaches to identify and characterize the in vivo transcriptomic signature of an arrestin-signaling biased ligand, [D-Trp(12),Tyr(34)]-bPTH(7-34), acting at the parathyroid hormone type 1 receptor (PTH1R), across six different murine tissues after chronic drug exposure. We are able to demonstrate that [D-Trp(12),Tyr(34)]-bPTH(7-34) elicits a distinctive arrestin-signaling focused transcriptomic response that is more coherently regulated, in an arrestin signaling-dependent manner, across more tissues than that of the pluripotent endogenous PTH1R ligand, hPTH(1-34). This arrestin-focused response signature is strongly linked with the transcriptional regulation of cell growth and development. Our informatic deconvolution of a conserved arrestin-dependent transcriptomic signature from wild type mice demonstrates a conceptual framework within which the in vivo outcomes of biased receptor signaling may be further investigated or predicted.


Asunto(s)
Redes Reguladoras de Genes/fisiología , Informática/métodos , Hormona Paratiroidea/farmacología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal/fisiología , Animales , Bovinos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Hormona Paratiroidea/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/agonistas , Receptor de Hormona Paratiroídea Tipo 1/fisiología , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/efectos de los fármacos
12.
J Biol Chem ; 290(45): 27021-27039, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26363071

RESUMEN

The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides ß-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger ß-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.


Asunto(s)
Receptores de Ghrelina/agonistas , Receptores de Ghrelina/antagonistas & inhibidores , Arrestinas/metabolismo , Diseño de Fármacos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Fosfatos de Inositol/biosíntesis , Cinética , Ligandos , Sistema de Señalización de MAP Quinasas , Receptores de Ghrelina/metabolismo , Transducción de Señal , Relación Estructura-Actividad , beta-Arrestinas
13.
J Biol Chem ; 289(48): 33442-55, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25261469

RESUMEN

The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through G(q/11), G(i/o), and G(12/13) as well as ß-arrestin-based scaffolds. However, the contribution of individual G protein and ß-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca(2+) mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and ß-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and ß-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and ß-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and ß-arrestin but uncover an important role for ß-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events.


Asunto(s)
Arrestina/metabolismo , Proteínas de Unión al GTP/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Receptores de Ghrelina/metabolismo , Arrestina/genética , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Plasticidad Neuronal/fisiología , Estabilidad Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Receptores de Ghrelina/genética , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
14.
Expert Opin Drug Discov ; 19(2): 147-159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37936504

RESUMEN

INTRODUCTION: Escalating costs and inherent uncertainties associated with drug discovery invite initiatives to improve its efficiency and de-risk campaigns for inventing better therapeutics. One such initiative involves recognizing and exploiting current approaches in therapeutics invention with molecular mechanisms of action that hold promise for designing and targeting new chemical entities as drugs. AREAS COVERED: This perspective considers the current contextual framework around three drug-discovery approaches and evaluates their potential to help identify new targets/modalities in small-molecule molecular pharmacology: diversifying ligand-directed phenotypes for G protein-coupled receptor (GPCR) pharmacotherapeutic signaling; developing therapeutic-protein degraders and stabilizers for proximity-inducing pharmacology; and mining organelle biology for druggable therapeutic targets. EXPERT OPINION: The contemporary drug-discovery approaches examined appear generalizable and versatile to have applications in therapeutics invention beyond those case studies discussed herein. Accordingly, they may be considered strategic trends worthy of note in advancing the field toward novel ways of addressing pharmacotherapeutically unmet medical needs.


Asunto(s)
Descubrimiento de Drogas , Receptores Acoplados a Proteínas G , Humanos , Ligandos
15.
Neuroscience ; 551: 177-184, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38823551

RESUMEN

Dopamine D1 receptor agonists improve spatial working memory, but their effects on temporal order memory, particularly prone to the effects of aging, have not been studied. Two D1 agonists, PF6256142 (PF) and 2-methyldihydrexidine (2MDHX), were examined for their effects in a rodent temporal order recognition task. Our results are consistent with the hypothesis that there is an age-related decline in rodent temporal order memory. The data also show that either agonist rescues the poor memory performance with a large effective size. Interestingly, the optimal effective dose varied among individual rats of different age groups. PF showed greater potency for older rats, whereas 2MDHX showed better overall population effectiveness. Both PF and 2MDHX have high intrinsic activity at rodent D1-mediated cAMP synthesis. Conversely, at D1-mediated ß-arrestin recruitment, PF has essentially no intrinsic activity, whereas 2MDHX is a super-agonist. These findings suggest that D1 agonists have potential to treat age-related cognitive decline, and the pattern of functional selectivity may be useful for developing drugs with an improved therapeutic index.


Asunto(s)
Envejecimiento , Agonistas de Dopamina , Receptores de Dopamina D1 , Animales , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Masculino , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Agonistas de Dopamina/farmacología , Ratas , Fenantridinas/farmacología , Relación Dosis-Respuesta a Droga , Reconocimiento en Psicología/efectos de los fármacos , Ratas Sprague-Dawley , Ratas Endogámicas F344 , AMP Cíclico/metabolismo
16.
Cells ; 12(12)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371033

RESUMEN

Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates. We compared the roles of arrestin-3 conformational equilibrium and Lys-295 in GPCR binding and JNK3 activation. Several mutants with enhanced ability to bind GPCRs showed much lower activity towards JNK3, whereas a mutant that does not bind GPCRs was more active. The subcellular distribution of mutants did not correlate with GPCR recruitment or JNK3 activation. Charge neutralization and reversal mutations of Lys-295 differentially affected receptor binding on different backgrounds but had virtually no effect on JNK3 activation. Thus, GPCR binding and arrestin-3-assisted JNK3 activation have distinct structural requirements, suggesting that facilitation of JNK3 activation is the function of arrestin-3 that is not bound to a GPCR.


Asunto(s)
Arrestinas , Receptores Acoplados a Proteínas G , Animales , Arrestina beta 2/metabolismo , Fosforilación/fisiología , Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Unión Proteica/fisiología , Mamíferos/metabolismo
17.
Vitam Horm ; 123: 151-185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37717984

RESUMEN

Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.


Asunto(s)
Insulina , Receptor de Insulina , Humanos , Microscopía por Crioelectrón , Membrana Celular , Bases de Datos de Proteínas
18.
Psychopharmacology (Berl) ; 240(10): 2187-2199, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37578525

RESUMEN

RATIONALE: Dopamine D1 receptor agonists have been shown to improve working memory, but often have a non-monotonic (inverted-U) dose-response curve. One hypothesis is that this may reflect dose-dependent differential engagement of D1 signaling pathways, a mechanism termed functional selectivity or signaling bias. OBJECTIVES AND METHODS: To test this hypothesis, we compared two D1 ligands with different signaling biases in a rodent T-maze alternation task. Both tested ligands (2-methyldihydrexidine and CY208243) have high intrinsic activity at cAMP signaling, but the former also has markedly higher intrinsic activity at D1-mediated recruitment of ß-arrestin. The spatial working memory was assessed via the alternation behavior in the T-maze where the alternate choice rate quantified the quality of the memory and the duration prior to making a choice represented the decision latency. RESULTS: Both D1 drugs changed the alternate rate and the choice latency in a dose-dependent manner, albeit with important differences. 2-Methyldihydrexidine was somewhat less potent but caused a more homogeneous improvement than CY208243 in spatial working memory. The maximum changes in the alternate rate and the choice latency tended to occur at different doses for both drugs. CONCLUSIONS: These data suggest that D1 signaling bias in these two pathways (cAMP vs ß-arrestin) has complex effects on cognitive processes as assessed by T-maze alternation. Understanding these mechanisms should allow the identification or discovery of D1 agonists that can provide superior cognitive enhancement.


Asunto(s)
Agonistas de Dopamina , Dopamina , Agonistas de Dopamina/farmacología , Dopamina/farmacología , Ligandos , Receptores de Dopamina D1/metabolismo , Aprendizaje por Laberinto , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacología
19.
Cell Rep ; 42(10): 113173, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742189

RESUMEN

G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal/fisiología , Proteínas Portadoras/metabolismo , Algoritmos
20.
Fundam Clin Pharmacol ; 36(6): 976-984, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35767599

RESUMEN

Aripiprazole, brexpiprazole, and cariprazine are dopamine D2 receptor ligands considered as effective and tolerable antipsychotics. Brain imaging studies showed that schizophrenia is characterized by elevated dopamine receptor density, which is exacerbated by antipsychotic treatments. Despite the complexity of translating in vitro studies to human neurobiology, overexpression experiments in transfected cells provide a proof-of-concept model of the influence of receptor density on antipsychotic treatments. Since receptor density was demonstrated to influence the signaling profile of dopaminergic ligands, we hypothesized that high dopamine D2 receptor expression levels could influence the recruitment of Gi1 and ß-arrestin2 in response to partial agonists used as antipsychotics. A nanoluciferase complementation assay was used to monitor ß-arrestin2 and Gi1 recruitment at the dopamine D2L receptor in response to aripiprazole, brexpiprazole, and cariprazine. This was performed in transfected cells carrying a doxycycline-inducible system allowing to manipulate the expression of the dopamine D2L receptors. Increasing D2L receptor density reoriented aripiprazole's preferential recruitment from Gi1 to ß-arrestin2. With respect to brexpiprazole, which showed inverse agonism for ß-arrestin2 recruitment at the lower receptor density tested, inverse agonism for Gi1 recruitment was observed when tested at a high receptor expression level. At variance, cariprazine evoked a potent partial agonism for ß-arrestin2 recruitment only, in all the tested conditions. D2L receptor density appears to shape the recruitment bias of aripiprazole and brexpiprazole, but not cariprazine. This suggests that changes in receptor expression level could qualitatively influence the functional response of partial agonists used in psychiatry.


Asunto(s)
Antipsicóticos , Dopamina , Humanos , Aripiprazol/farmacología , Dopamina/metabolismo , Antipsicóticos/farmacología , Receptores de Dopamina D2 , Agonistas de Dopamina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA