Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 69(6): 1017-1027.e6, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29526696

RESUMEN

The lineage-specific transcription factor (TF) MEF2C is often deregulated in leukemia. However, strategies to target this TF have yet to be identified. Here, we used a domain-focused CRISPR screen to reveal an essential role for LKB1 and its Salt-Inducible Kinase effectors (SIK3, in a partially redundant manner with SIK2) to maintain MEF2C function in acute myeloid leukemia (AML). A key phosphorylation substrate of SIK3 in this context is HDAC4, a repressive cofactor of MEF2C. Consequently, targeting of LKB1 or SIK3 diminishes histone acetylation at MEF2C-bound enhancers and deprives leukemia cells of the output of this essential TF. We also found that MEF2C-dependent leukemias are sensitive to on-target chemical inhibition of SIK activity. This study reveals a chemical strategy to block MEF2C function in AML, highlighting how an oncogenic TF can be disabled by targeting of upstream kinases.


Asunto(s)
Leucemia Mieloide Aguda/enzimología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Acetilación , Animales , Antineoplásicos/farmacología , Proliferación Celular , Elementos de Facilitación Genéticos , Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Células HEK293 , Células Hep G2 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Células K562 , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Células THP-1 , Células U937
2.
Proc Natl Acad Sci U S A ; 120(11): e2218209120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877841

RESUMEN

Mammals exhibit circadian cycles of sleep and wakefulness under the control of the suprachiasmatic nucleus (SCN), such as the strong arousal phase-locked to the beginning of the dark phase in laboratory mice. Here, we demonstrate that salt-inducible kinase 3 (SIK3) deficiency in gamma-aminobutyric acid (GABA)-ergic neurons or neuromedin S (NMS)-producing neurons delayed the arousal peak phase and lengthened the behavioral circadian cycle under both 12-h light:12-h dark condition (LD) and constant dark condition (DD) without changing daily sleep amounts. In contrast, the induction of a gain-of-function mutant allele of Sik3 in GABAergic neurons exhibited advanced activity onset and a shorter circadian period. Loss of SIK3 in arginine vasopressin (AVP)-producing neurons lengthened the circadian cycle, but the arousal peak phase was similar to that in control mice. Heterozygous deficiency of histone deacetylase (HDAC) 4, a SIK3 substrate, shortened the circadian cycle, whereas mice with HDAC4 S245A, which is resistant to phosphorylation by SIK3, delayed the arousal peak phase. Phase-delayed core clock gene expressions were detected in the liver of mice lacking SIK3 in GABAergic neurons. These results suggest that the SIK3-HDAC4 pathway regulates the circadian period length and the timing of arousal through NMS-positive neurons in the SCN.


Asunto(s)
Nivel de Alerta , Histona Desacetilasas , Proteínas Serina-Treonina Quinasas , Vigilia , Animales , Ratones , Alelos , Arginina Vasopresina , Proteínas Serina-Treonina Quinasas/genética , Núcleo Supraquiasmático , Histona Desacetilasas/genética
3.
J Sleep Res ; : e14146, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253863

RESUMEN

We aim to identify genetic markers associated with idiopathic hypersomnia, a disabling orphan central nervous system disorder of hypersomnolence that is still poorly understood. In our study, DNA was extracted from 79 unrelated patients diagnosed with idiopathic hypersomnia with long sleep time at the National Reference Center for Narcolepsy-France according to very stringent diagnostic criteria. Whole exome sequencing on the first 30 patients with idiopathic hypersomnia (25 females and 5 males) allowed the single nucleotide variants to be compared with a control population of 574 healthy subjects from the French Exome project database. We focused on the identification of genetic variants among 182 genes related to the regulation of sleep and circadian rhythm. Candidate variants obtained by exome sequencing analysis were then validated in a second sample of 49 patients with idiopathic hypersomnia (37 females and 12 males). Our study characterised seven variants from six genes significantly associated with idiopathic hypersomnia compared with controls. A targeted sequencing analysis of these seven variants on 49 other patients with idiopathic hypersomnia confirmed the relative over-representation of the A➔C variant of rs2859390, located in a potential splicing-site of PER3 gene. Our findings support a genetic predisposition and identify pathways involved in the pathogeny of idiopathic hypersomnia. A variant of the PER3 gene may predispose to idiopathic hypersomnia with long sleep time.

4.
J Biol Chem ; 298(5): 101929, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413286

RESUMEN

The AMP-activated protein kinase (AMPK) and AMPK-related kinase salt-inducible kinase 3 (SIK3) regulate many important biological processes ranging from metabolism to sleep. Liver kinase B1 is known to phosphorylate and activate both AMPK and SIK3, but the existence of other upstream kinases was unclear. In this study, we detected liver kinase B1-independent AMPK-related kinase phosphorylation activities in human embryonic kidney cells as well as in mouse brains. Biochemical purification of this phosphorylation activity uncovered mammalian sterile 20-like kinase 3 (MST3). We demonstrate that MST3 from human embryonic kidney cells could phosphorylate AMPK and SIK3 in vivo. In addition, recombinant MST3 expressed in and purified from Escherichia coli could directly phosphorylate AMPK and SIK3 in vitro. Moreover, four other members of the MST kinase family could also phosphorylate AMPK or SIK3. Our results have revealed new kinases able to phosphorylate and activate AMPK and SIK3.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo
5.
J Biol Chem ; 298(12): 102644, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309093

RESUMEN

Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Ratones , Bleomicina , Fibrosis , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Modelos Animales de Enfermedad
6.
Cell Mol Life Sci ; 79(8): 439, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864266

RESUMEN

Previous studies suggested that anti-inflammatory microglia/macrophages (Mi/MΦ) play a role in "normal phagocytosis," which promoted the rapid clearance of necrotic substances and apoptotic cells. More recently, a few studies have found that Mi/MΦ also play a role in "pathological phagocytosis" in the form of excessive or reduced phagocytosis, thereby worsening damage induced by CNS diseases. However, the underlying mechanisms and the Mi/MΦ subtypes related to this pathological phagocytosis are still unknown. Salt-inducible kinase 3 (SIK3), a member of the 5' adenosine monophosphate-activated protein kinase (AMPK) family, has been shown to regulate inflammation in several peripheral diseases. Whether SIK3 also regulates the inflammatory response in CNS diseases is currently unknown. Therefore, in this study, we created a transgenic tamoxifen-induced Mi/MΦ-specific SIK3 conditional knockout (SIK3-cKO) mouse to examine SIK3's role in phagocytotic function induced by transient focal cerebral ischemia (tFCI). By single-cell RNA-seq, we found the pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function, but the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. We found that SIK3-cKO caused Mi/MΦ heterogenization from the transitional phenotype to the anti-inflammatory phenotype after tFCI. This phenotypic shift corresponded with enhanced phagocytosis of both apoptotic and live neurons. Interestingly, SIK3-cKO enhanced normal phagocytosis of myelin debris but attenuating excessive phagocytosis of non-damaged myelin sheath, thereby protecting white matter integrity after tFCI. CD16, a pro-inflammation marker, was decreased significantly by SIK3-cKO and correlated with "excessive phagocytosis." SIK3-cKO promoted long-term recovery of white matter function and neurological function as assessed with electrophysiological compound action potential (CAPs) and behavioral analysis. This study is the first to show a role of SIK3 in Mi/MΦ phagocytosis in CNS diseases, and reveals that promoting Mi/MΦ anti-inflammatory heterogenization inhibits "excessive phagocytosis" of live cells and facilitates "normal phagocytosis" of apoptotic cells. Therefore, inhibition of SIK3 in Mi/MΦ may be a potential therapeutic target in stroke and other CNS diseases with accompanying white matter destruction. In the acute stage of tFCI, Mi/MΦ polarized into different phenotypes. The pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function. In contrast, the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. After tFCI, SIK3-cKO promoted anti-inflammatory phenotypic heterogenization of Mi/MΦ. SIK3-cKO promoted Mi/MΦ phagocytosis of apoptotic (normal phagocytosis) and living neuronal cell bodies (excessive phagocytosis) in gray matter. Interestingly, SIK3-cKO specifically increased normal phagocytosis of myelin debris concurrent with an attenuation of excessive phagocytosis of myelin sheath in white matter. These changes induced by SIK3-cKO were associated with protection of white matter integrity and long-term neurofunctional recovery after tFCI.


Asunto(s)
Isquemia Encefálica , Enfermedades del Sistema Nervioso Central , Animales , Isquemia Encefálica/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Inflamación/patología , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Fagocitosis , Proteínas Serina-Treonina Quinasas/genética
7.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203391

RESUMEN

Preeclampsia (PE) remains one of the leading causes of maternal and perinatal morbidity and mortality. However, the exact pathophysiology of PE is still unclear. The recent widely accepted notion that successful pregnancy relies on maternal immunological adaptation is of utmost importance. Moreover, salt-inducible kinase 3 (SIK3) is an AMP-activated protein kinase-related kinase, and it has reported a novel regulator of energy and inflammation, and its expression related with some diseases. To explore whether SIK3 expression correlated with PE, we analyzed SIK3 gene expression and its association with PE through GEO datasets. We identified that SIK3 was significantly downregulated in PE across four datasets (p < 0.05), suggesting that SIK3 participated in the pathogenesis of PE. We initially demonstrated the significant downregulation of SIK3 in trophoblast cells of PE. SIK3 downregulation was positively correlated with the increased number of CD204(+) cells in in vivo and in vitro experiments. The increased number of CD204(+) cells could inhibit the migration and invasion of trophoblast cells. We then clarified the potential mechanism of PE with SIK3 downregulation: M2 skewing was triggered by trophoblast cells derived via the CCL24/CCR3 axis, leading to an increase in CD204(+) cells, a decrease in phagocytosis, and the production of IL-10 at the maternal-fetal interface of the placenta with PE. IL-10 further contributed to a reduction in the migration and invasion of trophoblast cells. It also established a feedback loop wherein trophoblast cells increased CCL24 production to maintain M2 dominance in the placental environments of PE.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Preeclampsia/genética , Interleucina-10 , Regulación hacia Abajo , Quinasas de la Proteína-Quinasa Activada por el AMP , Quimiocina CCL24
8.
J Neurosci ; 41(12): 2733-2746, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33558433

RESUMEN

Sleep is regulated in a homeostatic manner. Sleep deprivation increases sleep need, which is compensated mainly by increased EEG δ power during non-rapid eye movement sleep (NREMS) and, to a lesser extent, by increased sleep amount. Although genetic factors determine the constitutive level of sleep need and sleep amount in mice and humans, the molecular entity behind sleep need remains unknown. Recently, we found that a gain-of-function Sleepy (Slp) mutation in the salt-inducible kinase 3 (Sik3) gene, which produces the mutant SIK3(SLP) protein, leads to an increase in NREMS EEG δ power and sleep amount. Since Sik3Slp mice express SIK3(SLP) in various types of cells in the brain as well as multiple peripheral tissues from the embryonic stage, the cell type and developmental stage responsible for the sleep phenotype in Sik3Slp mice remain to be elucidated. Here, we generated two mouse lines, synapsin1CreERT2 and Sik3ex13flox mice, which enable inducible Cre-mediated, conditional expression of SIK3(SLP) in neurons on tamoxifen administration. Administration of tamoxifen to synapsin1CreERT2 mice during late infancy resulted in higher recombination efficiency than administration during adolescence. SIK3(SLP) expression after late infancy increased NREMS and NREMS δ power in male synapsin1CreERT2; Sik3ex13flox/+ mice. The expression of SIK3(SLP) after adolescence led to a higher NREMS δ power without a significant change in NREMS amounts. Thus, neuron-specific expression of SIK3(SLP) after late infancy is sufficient to increase sleep.SIGNIFICANCE STATEMENT The propensity to accumulate sleep need during wakefulness and to dissipate it during sleep underlies the homeostatic regulation of sleep. However, little is known about the developmental stage and cell types involved in determining the homeostatic regulation of sleep. Here, we show that Sik3Slp allele induction in mature neurons in late infancy is sufficient to increase non-rapid eye movement sleep amount and non-rapid eye movement sleep δ power. SIK3 signaling in neurons constitutes an intracellular mechanism to increase sleep.


Asunto(s)
Alelos , Mutación/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Sueño/fisiología , Vigilia/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética
9.
Audiol Neurootol ; 25(4): 200-208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32126566

RESUMEN

INTRODUCTION: Noise-induced hearing loss (NIHL) is a common occupational disease that represents an irreversible hearing damage to the auditory system. It has been identified as a complicated disease involving both environmental and genetic factors. More efforts need to be made to explore the genes associated with susceptibility to NIHL. The main aim of this research is to detect the associations between SIK3 polymorphisms and NIHL susceptibility in Han people in China. METHODS: A case-control study was performed in 586 cases and 639 controls in a textile factory matched for sex, age, smoking, drinking, work time with noise, and intensity of noise exposure. Three single nucleotide polymorphisms (SNPs) (rs493134, rs6589574, and rs7121898) of SIK3 were genotyped in the participants. Then, the main influences of the SNPs on and their interactions with NIHL were assessed. RESULTS: Under the allelic model, distributions of rs493134 T, rs6589574 G, and rs7121898 A in the NIHL group are statistically different from those of the normal group (p = 0.001, p < 0.001, and p = 0.019, respectively). The following haplotype analysis shows that TAA (rs493134-rs6589574-rs7121898) may have a protective effect, while TGA (rs493134-rs6589574-rs7121898) (OR = 1.49, 95% CI = 1.25-1.79) may be a risk factor for NIHL. Multifactor dimensionality reduction analysis shows that the interaction of the 3 selected SNPs is associated with NIHL susceptibility (OR = 1.88, 95% CI = 1.50-2.36). CONCLUSION: The results suggest that 3 SNPs (rs493134, rs6589574, and rs7121898) of SIK3 may be an important part of NIHL susceptibility and can be applied in the prevention, early diagnosis, and treatment of NIHL in noise-exposed Chinese workers.


Asunto(s)
Pérdida Auditiva Provocada por Ruido/genética , Ruido en el Ambiente de Trabajo/estadística & datos numéricos , Proteínas Quinasas/genética , Industria Textil , Adulto , Factores de Edad , Consumo de Bebidas Alcohólicas/epidemiología , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Pérdida Auditiva Provocada por Ruido/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Ruido en el Ambiente de Trabajo/efectos adversos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Factores Sexuales , Fumar/epidemiología
10.
J Nanobiotechnology ; 18(1): 66, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345321

RESUMEN

BACKGROUND: Osteoblast differentiation is a vital process for fracture healing, and exosomes are nanosized membrane vesicles that can deliver therapeutic drugs easily and safely. Macrophages participate in the regulation of various biological processes in vivo, and macrophage-derived exosomes (MD-Exos) have recently been a topic of increasing research interest. However, few study has explored the link between MD-Exos and osteoblast differentiation. Herein, we sought to identify miRNAs differentially expressed between M1 and M2 macrophage-derived exosomes, and to evaluate their roles in the context of osteoblast differentiation. RESULTS: We found that microRNA-5106 (miR-5106) was significantly overexpressed in M2 macrophage-derived exosomes (M2D-Exos), while its expression was decreased in M1 macrophage-derived exosomes (M1D-Exos), and we found that this exosomal miRNA can induce bone mesenchymal stem cell (BMSC) osteogenic differentiation via directly targeting the Salt-inducible kinase 2 and 3 (SIK2 and SIK3) genes. In addition, the local injection of both a miR-5106 agonist or M2D-Exos to fracture sites was sufficient to accelerate healing in vivo. CONCLUSIONS: Our study demonstrates that miR-5106 is highly enriched in M2D-Exos, and that it can be transferred to BMSCs wherein it targets SIK2 and SIK3 genes to promote osteoblast differentiation.


Asunto(s)
Diferenciación Celular , Exosomas/metabolismo , MicroARNs/metabolismo , Osteogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Técnicas de Cocultivo , Exosomas/trasplante , Fracturas del Fémur/patología , Fracturas del Fémur/terapia , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(32): E6669-E6677, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28743754

RESUMEN

The physiology and behavior of many organisms are subject to daily cycles. In Drosophila melanogaster the daily locomotion patterns of single flies are characterized by bursts of activity at dawn and dusk. Two distinct clusters of clock neurons-morning oscillators (M cells) and evening oscillators (E cells)-are largely responsible for these activity bursts. In contrast, male-female pairs of flies follow a distinct pattern, most notably characterized by an activity trough at dusk followed by a high level of male courtship during the night. This male sex drive rhythm (MSDR) is mediated by the M cells along with DN1 neurons, a cluster of clock neurons located in the dorsal posterior region of the brain. Here we report that males lacking Salt-inducible kinase 3 (SIK3) expression in M cells exhibit a short period of MSDR but a long period of single-fly locomotor rhythm (SLR). Moreover, lack of Sik3 in M cells decreases the amplitude of PERIOD (PER) cycling in DN1 neurons, suggesting that SIK3 non-cell-autonomously regulates DN1 neurons' molecular clock. We also show that Sik3 reduction interferes with circadian nucleocytoplasmic shuttling of Histone deacetylase 4 (HDAC4), a SIK3 phosphorylation target, in clock neurons and that constitutive HDAC4 localization in the nucleus shortens the period of MSDR. Taking these findings together, we conclude that SIK3-HDAC4 signaling in M cells regulates MSDR by regulating the molecular oscillation in DN1 neurons.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Histona Desacetilasas/metabolismo , Neuronas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Histona Desacetilasas/genética , Masculino , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética
12.
Biochem Biophys Res Commun ; 516(4): 1097-1102, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31280862

RESUMEN

The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites.


Asunto(s)
Acetilcoenzima A/metabolismo , Condrocitos/metabolismo , Osteogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Condrocitos/citología , Condrogénesis , Femenino , Eliminación de Gen , Metaboloma , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
13.
Diabetologia ; 60(2): 314-323, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27807598

RESUMEN

AIMS/HYPOTHESIS: Salt-inducible kinases (SIKs) are related to the metabolic regulator AMP-activated protein kinase (AMPK). SIK2 is abundant in adipose tissue. The aims of this study were to investigate the expression of SIKs in relation to human obesity and insulin resistance, and to evaluate whether changes in the expression of SIKs might play a causal role in the development of disturbed glucose uptake in human adipocytes. METHODS: SIK mRNA and protein was determined in human adipose tissue or adipocytes, and correlated to clinical variables. SIK2 and SIK3 expression and phosphorylation were analysed in adipocytes treated with TNF-α. Glucose uptake, GLUT protein levels and localisation, phosphorylation of protein kinase B (PKB/Akt) and the SIK substrate histone deacetylase 4 (HDAC4) were analysed after the SIKs had been silenced using small interfering RNA (siRNA) or inhibited using a pan-SIK-inhibitor (HG-9-91-01). RESULTS: We demonstrate that SIK2 and SIK3 mRNA are downregulated in adipose tissue from obese individuals and that the expression is regulated by weight change. SIK2 is also negatively associated with in vivo insulin resistance (HOMA-IR), independently of BMI and age. Moreover, SIK2 protein levels and specific kinase activity display a negative correlation to BMI in human adipocytes. Furthermore, SIK2 and SIK3 are downregulated by TNF-α in adipocytes. Silencing or inhibiting SIK1-3 in adipocytes results in reduced phosphorylation of HDAC4 and PKB/Akt, less GLUT4 at the plasma membrane, and lower basal and insulin-stimulated glucose uptake in adipocytes. CONCLUSION/INTERPRETATION: This is the first study to describe the expression and function of SIKs in human adipocytes. Our data suggest that SIKs might be protective in the development of obesity-induced insulin resistance, with implications for future treatment strategies.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adulto , Anciano , Animales , Western Blotting , Femenino , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/farmacología
14.
Crit Care ; 21(1): 47, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28270177

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a multifactorial syndrome, but knowledge about its pathophysiology and possible genetic background is limited. Recently the first hypothesis-free genetic association studies have been published to explore individual susceptibility to AKI. We aimed to replicate the previously identified associations between five candidate single nucleotide polymorphisms (SNP) in apoptosis-related genes BCL2, SERPINA4, SERPINA5, and SIK3 and the development of AKI, using a prospective cohort of critically ill patients with sepsis/septic shock, in Finland. METHODS: This is a prospective, observational multicenter study. Of 2567 patients without chronic kidney disease and with genetic samples included in the Finnish Acute Kidney Injury (FINNAKI) study, 837 patients had sepsis and 627 patients had septic shock. AKI was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria, considering stages 2 and 3 affected (severe AKI), stage 0 unaffected, and stage 1 indecisive. Genotyping was done using iPLEXTM Assay (Agena Bioscience). The genotyped SNPs were rs8094315 and rs12457893 in the intron of the BCL2 gene, rs2093266 in the SERPINA4 gene, rs1955656 in the SERPINA5 gene and rs625145 in the SIK3 gene. Association analyses were performed using logistic regression with PLINK software. RESULTS: We found no significant associations between the SNPs and severe AKI in patients with sepsis/septic shock, even after adjustment for confounders. Among patients with septic shock (252 with severe AKI and 226 without AKI (149 with KDIGO stage 1 excluded)), the SNPs rs2093266 and rs1955656 were significantly (odds ratio 0.63, p = 0.04276) associated with stage 2-3 AKI after adjusting for clinical and demographic variables. CONCLUSIONS: The SNPs rs2093266 in the SERPINA4 and rs1955656 in the SERPINA5 were associated with the development of severe AKI (KDIGO stage 2-3) in critically ill patients with septic shock. For the other SNPs, we did not confirm the previously reported associations.


Asunto(s)
Lesión Renal Aguda/genética , Inhibidor de Proteína C/genética , Serpinas/genética , Choque Séptico/complicaciones , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/fisiopatología , Anciano , Enfermedad Crítica/epidemiología , Femenino , Finlandia , Variación Genética/fisiología , Humanos , Unidades de Cuidados Intensivos/organización & administración , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Estudios Prospectivos , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Estudios Retrospectivos , Choque Séptico/fisiopatología
15.
Mol Neurobiol ; 61(3): 1404-1416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37715891

RESUMEN

Imbalance between excitation and inhibition is an important cause of epilepsy. Salt-inducible kinase 1 (SIK1) gene mutation can cause epilepsy. In this study, we first found that the expression of SIK3 is increased after epilepsy. Furthermore, the role of SIK3 in epilepsy was explored. In cultured hippocampal neurons, we used Pterosin B, a selective SIK3 inhibitor that can inhibit epileptiform discharges induced by the convulsant drug cyclothiazide (a positive allosteric modulator of AMPA receptors, CTZ). Knockdown of SIK3 inhibited epileptiform discharges and increased the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). In mice, knockdown of SIK3 reduced epilepsy susceptibility in a pentylenetetrazole (a GABAA receptor antagonist, PTZ) acute kindling experiment and increased the expression of GABAA receptor α1. In conclusion, our results suggest that blockade or knockdown of SIK3 can inhibit epileptiform discharges and that SIK3 has the potential to be a novel target for epilepsy treatment.


Asunto(s)
Epilepsia , Receptores de GABA-A , Animales , Ratones , Ratas , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Ácido gamma-Aminobutírico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/inducido químicamente
16.
Neurosci Res ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537682

RESUMEN

Sleep is homeostatically regulated by sleep pressure, which increases during wakefulness and dissipates during sleep. Recent studies have suggested that the cerebral neocortex, a six-layered structure composed of various layer- and projection-specific neuronal subtypes, is involved in the representation of sleep pressure governed by transcriptional regulation. Here, we examined the transcriptomic changes in neuronal subtypes in the neocortex upon increased sleep pressure using single-nucleus RNA sequencing datasets and predicted the putative intracellular and intercellular molecules involved in transcriptome alterations. We revealed that sleep deprivation (SD) had the greatest effect on the transcriptome of layer 2 and 3 intratelencephalic (L2/3 IT) neurons among the neocortical glutamatergic neuronal subtypes. The expression of mutant SIK3 (SLP), which is known to increase sleep pressure, also induced profound changes in the transcriptome of L2/3 IT neurons. We identified Junb as a candidate transcription factor involved in the alteration of the L2/3 IT neuronal transcriptome by SD and SIK3 (SLP) expression. Finally, we inferred putative intercellular ligands, including BDNF, LSAMP, and PRNP, which may be involved in SD-induced alteration of the transcriptome of L2/3 IT neurons. We suggest that the transcriptome of L2/3 IT neurons is most impacted by increased sleep pressure among neocortical glutamatergic neuronal subtypes and identify putative molecules involved in such transcriptional alterations.

17.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37477881

RESUMEN

Sleep need drives sleep and plays a key role in homeostatic regulation of sleep. So far sleep need can only be inferred by animal behaviors and indicated by electroencephalography (EEG). Here we report that phosphorylation of threonine (T) 221 of the salt-inducible kinase 3 (SIK3) increased the catalytic activity and stability of SIK3. T221 phosphorylation in the mouse brain indicates sleep need: more sleep resulting in less phosphorylation and less sleep more phosphorylation during daily sleep/wake cycle and after sleep deprivation (SD). Sleep need was reduced in SIK3 loss of function (LOF) mutants and by T221 mutation to alanine (T221A). Rebound after SD was also decreased in SIK3 LOF and T221A mutant mice. By contrast, SIK1 and SIK2 do not satisfy criteria to be both an indicator and a controller of sleep need. Our results reveal SIK3-T221 phosphorylation as a chemical modification which indicates and controls sleep need.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Sueño , Ratones , Animales , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sueño/fisiología , Privación de Sueño , Homeostasis
18.
Front Neurosci ; 17: 1181555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662102

RESUMEN

Sleep behavior has been observed from non-vertebrates to humans. Sleepy mutation in mice resulted in a notable increase in sleep and was identified as an exon-skipping mutation of the salt-inducible kinase 3 (Sik3) gene, conserved among animals. The skipped exon includes a serine residue that is phosphorylated by protein kinase A. Overexpression of a mutant gene with the conversion of this serine into alanine (Sik3-SA) increased sleep in both mice and the fruit fly Drosophila melanogaster. However, the mechanism by which Sik3-SA increases sleep remains unclear. Here, we found that Sik3-SA overexpression in all neurons increased sleep under both light-dark (LD) conditions and constant dark (DD) conditions in Drosophila. Additionally, overexpression of Sik3-SA only in PDF neurons, which are a cluster of clock neurons regulating the circadian rhythm, increased sleep during subjective daytime while decreasing the amplitude of circadian rhythm. Furthermore, suppressing Sik3-SA overexpression specifically in PDF neurons in flies overexpressing Sik3-SA in all neurons reversed the sleep increase during subjective daytime. These results indicate that Sik3-SA alters the circadian function of PDF neurons and leads to an increase in sleep during subjective daytime under constant dark conditions.

19.
Mol Metab ; 74: 101753, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321371

RESUMEN

OBJECTIVE: Norepinephrine stimulates the adipose tissue thermogenic program through a ß-adrenergic receptor (ßAR)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling cascade. We discovered that a noncanonical activation of the mechanistic target of rapamycin complex 1 (mTORC1) by PKA is required for the ßAR-stimulation of adipose tissue browning. However, the downstream events triggered by PKA-phosphorylated mTORC1 activation that drive this thermogenic response are not well understood. METHODS: We used a proteomic approach of Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) to characterize the global protein phosphorylation profile in brown adipocytes treated with the ßAR agonist. We identified salt-inducible kinase 3 (SIK3) as a candidate mTORC1 substrate and further tested the effect of SIK3 deficiency or SIK inhibition on the thermogenic gene expression program in brown adipocytes and in mouse adipose tissue. RESULTS: SIK3 interacts with RAPTOR, the defining component of the mTORC1 complex, and is phosphorylated at Ser884 in a rapamycin-sensitive manner. Pharmacological SIK inhibition by a pan-SIK inhibitor (HG-9-91-01) in brown adipocytes increases basal Ucp1 gene expression and restores its expression upon blockade of either mTORC1 or PKA. Short-hairpin RNA (shRNA) knockdown of Sik3 augments, while overexpression of SIK3 suppresses, Ucp1 gene expression in brown adipocytes. The regulatory PKA phosphorylation domain of SIK3 is essential for its inhibition. CRISPR-mediated Sik3 deletion in brown adipocytes increases type IIa histone deacetylase (HDAC) activity and enhances the expression of genes involved in thermogenesis such as Ucp1, Pgc1α, and mitochondrial OXPHOS complex protein. We further show that HDAC4 interacts with PGC1α after ßAR stimulation and reduces lysine acetylation in PGC1α. Finally, a SIK inhibitor well-tolerated in vivo (YKL-05-099) can stimulate the expression of thermogenesis-related genes and browning of mouse subcutaneous adipose tissue. CONCLUSIONS: Taken together, our data reveal that SIK3, with the possible contribution of other SIKs, functions as a phosphorylation switch for ß-adrenergic activation to drive the adipose tissue thermogenic program and indicates that more work to understand the role of the SIKs is warranted. Our findings also suggest that maneuvers targeting SIKs could be beneficial for obesity and related cardiometabolic disease.


Asunto(s)
Tejido Adiposo , Proteómica , Ratones , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Tejido Adiposo/metabolismo , Adipocitos Marrones/metabolismo , Receptores Adrenérgicos beta/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Termogénesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
20.
Neurosci Res ; 177: 16-24, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34856199

RESUMEN

Sleep pressure, the driving force of the homeostatic sleep regulation, is accumulated during wakefulness and dissipated during sleep. Sleep deprivation (SD) has been used as a method to acutely increase animal's sleep pressure for investigating the molecular changes under high sleep pressure. However, SD induces changes not only reflecting increased sleep pressure but also inevitable stresses and prolonged wake state itself. The Sik3Sleepy mutant mice (Sleepy) exhibit constitutively high sleep pressure despite sleeping longer, and have been useful as a model of increased sleep pressure. Here we conducted a cross-comparison of brain metabolomic profiles between SD versus ad lib slept mice, as well as Sleepy mutant versus littermate wild-type mice. Targeted metabolome analyses of whole brains quantified 203 metabolites in total, of which 43 metabolites showed significant changes in SD, whereas three did in Sleepy mutant mice. The large difference in the number of differential metabolites highlighted limitations of SD as methodology. The cross-comparison revealed that a decrease in betaine and an increase in imidazole dipeptides are associated with high sleep pressure in both models. These metabolites may be novel markers of sleep pressure at the whole-brain level. Furthermore, we found that intracerebroventricular injection of imidazole dipeptides increased subsequent NREM sleep time, suggesting the possibility that imidazole dipeptides may participate in the regulation of sleep in mice.


Asunto(s)
Sueño , Vigilia , Animales , Encéfalo/metabolismo , Dipéptidos/metabolismo , Electroencefalografía , Ratones , Proteínas Serina-Treonina Quinasas , Sueño/fisiología , Privación de Sueño , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA