RESUMEN
Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.
Asunto(s)
Inteligencia Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariontes/química , Eucariontes/genética , Bacterias/química , Bacterias/genéticaRESUMEN
Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.
Asunto(s)
Mamíferos , Marsupiales , Animales , Ratones , Australia , Dinámica Poblacional , Genotipo , Heterocigoto , Variación Genética , Genética de PoblaciónRESUMEN
Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Proteoma/genética , Proteoma/metabolismo , Metaboloma/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/sangre , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/sangre , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/patología , Metabolómica/métodosRESUMEN
α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.
RESUMEN
Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.
Asunto(s)
Pollos , Canal Catiónico TRPA1 , Zinc , Zinc/metabolismo , Zinc/química , Humanos , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/química , Animales , Células HEK293 , Dominios Proteicos , Especificidad de la EspecieRESUMEN
Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping the spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of nonclimate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modeling. This study emphasizes the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.
Asunto(s)
Biodiversidad , Poaceae , Poaceae/genética , Poaceae/clasificación , Flujo Génico , Evolución Biológica , Variación Genética , HumedalesRESUMEN
Discoveries in the field of genomics have revealed that non-coding genomic regions are not merely "junk DNA", but rather comprise critical elements involved in gene expression. These gene regulatory elements (GREs) include enhancers, insulators, silencers, and gene promoters. Notably, new evidence shows how mutations within these regions substantially influence gene expression programs, especially in the context of cancer. Advances in high-throughput sequencing technologies have accelerated the identification of somatic and germline single nucleotide mutations in non-coding genomic regions. This review provides an overview of somatic and germline non-coding single nucleotide alterations affecting transcription factor binding sites in GREs, specifically involved in cancer biology. It also summarizes the technologies available for exploring GREs and the challenges associated with studying and characterizing non-coding single nucleotide mutations. Understanding the role of GRE alterations in cancer is essential for improving diagnostic and prognostic capabilities in the precision medicine era, leading to enhanced patient-centered clinical outcomes.
Asunto(s)
Mutación , Neoplasias , Humanos , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Genoma Humano , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Neoplásica de la Expresión GénicaRESUMEN
BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.
Asunto(s)
Genoma de Planta , Polimorfismo de Nucleótido Simple , Flujo de Trabajo , Fitomejoramiento , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
Two-step tests for gene-environment ( G × E $G\times E$ ) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to "bin" SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by "displacing" true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2 G × E $G\times E$ testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a G × Sex interaction located near the SMAD7 gene.
Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Fenotipo , Simulación por Computador , Polimorfismo de Nucleótido SimpleRESUMEN
Whole-exome sequencing (WES) is widely used to diagnose complex genetic diseases and rare conditions. The implementation of a robust and effective quality control system for sample identification and tracking throughout the WES process is essential. We established a multiplex panel that included 22 coding single-nucleotide polymorphism (cSNP) loci. The personal identification and paternity identification abilities of the panel were evaluated, and a preliminary validation of the practical feasibility of the panel was conducted in a clinical WES case. These results indicate that the cSNP panel could be a useful tool for sample tracking in WES.
Asunto(s)
Exoma , Polimorfismo de Nucleótido Simple , Humanos , Secuenciación del Exoma , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
BACKGROUND: Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS: We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS: Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.
Asunto(s)
Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas , Humanos , Recién Nacido , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Factores de Riesgo , Bases de Datos GenéticasRESUMEN
BACKGROUND: Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS: We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS: Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS: We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Asunto(s)
Mitocondrias , Humanos , Masculino , Mitocondrias/genética , Femenino , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Variación Genética , Haplotipos , Insuficiencia Renal Crónica/genética , ADN Mitocondrial/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicaciones , Polimorfismo de Nucleótido Simple , Adulto , AncianoRESUMEN
The anthrax-causing bacterium Bacillus anthracis comprises the genetic clades A, B, and C. In the northernmost part (Pafuri) of Kruger National Park (KNP), South Africa, both the common A and rare B strains clades occur. The B clade strains were reported to be dominant in Pafuri before 1991, while A clade strains occurred towards the central parts of KNP. The prevalence of B clade strains is currently much lower as only A clade strains have been isolated from 1992 onwards in KNP. In this study 319 B. anthracis strains were characterized with 31-loci multiple-locus variable-number tandem repeat analysis (MLVA-31). B clade strains from soil (n = 9) and a Tragelaphus strepsiceros carcass (n = 1) were further characterised by whole genome sequencing and compared to publicly available genomes. The KNP strains clustered in the B clade before 1991 into two dominant genotypes. South African strains cluster into a dominant genotype A.Br.005/006 consisting of KNP as well as the other anthrax endemic region, Northern Cape Province (NCP), South Africa. A few A.Br.001/002 strains from both endemic areas were also identified. Subclade A.Br.101 belonging to the A.Br.Aust94 lineage was reported in the NCP. The B-clade strains seems to be vanishing, while outbreaks in South Africa are caused mainly by the A.Br.005/006 genotypes as well as a few minor clades such as A.Br.001/002 and A.Br.101 present in NCP. This work confirmed the existence of the rare and vanishing B-clade strains that group in B.Br.001 branch with KrugerB and A0991 KNP strains.
Asunto(s)
Carbunco , Bacillus anthracis , Filogenia , Bacillus anthracis/genética , Bacillus anthracis/clasificación , Bacillus anthracis/aislamiento & purificación , Sudáfrica , Carbunco/microbiología , Carbunco/epidemiología , Carbunco/veterinaria , Genotipo , Genoma Bacteriano , Microbiología del Suelo , Secuenciación Completa del GenomaRESUMEN
Alcohol-related liver disease (ALD) affects â¼30% of heavy drinkers and is characterized by liver steatosis, fibrosis, and steatohepatitis. The aggregation of keratins 8 (KRT8) and 18 (KRT18) plays a key role in the formation of Mallory-Denk bodies, a hallmark of ALD. Circulating levels of KRT18 fragments are elevated during ALD, and several KRT8/18 genetic variants have been linked to an increased risk of liver disease. In this study, we explored the relationship between the histologic features of ALD and genetic variants of KRT8/18 in 106 severe patients with ALD from the Hôpitaux Universitaires de Genève. We found a significant over-representation of several KRT8 (rs2070910, rs137898974, rs1065306) and KRT18 (rs17120866, rs1492241) variants located in the noncoding regions of these genes. Increased circulating level of keratins 18 fragments were associated with rs17120866 and alcoholic hepatitis. The combination of several KRT18 variants appeared associated with a poorer prognosis. These results highlight the possible role of KRT18 variants in ALD.
Asunto(s)
Queratina-18 , Queratina-8 , Hepatopatías Alcohólicas , Humanos , Queratina-18/genética , Queratina-18/sangre , Queratina-8/genética , Masculino , Femenino , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto , Índice de Severidad de la Enfermedad , Anciano , Hígado/patología , Hígado/metabolismoRESUMEN
BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. METHODS: Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. RESULTS: The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. CONCLUSIONS: This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.
Asunto(s)
Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Estudios de Casos y Controles , Genotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factor de Transcripción Ikaros/genética , Predisposición Genética a la EnfermedadRESUMEN
Genome-wide association Studies (GWAS), initially developed for human genetics, have been highly effective in plant research, particularly for vegetable crops. GWAS is a robust tool for identifying genes associated with key traits such as yield, nutritional value, disease resistance, adaptability, and bioactive compound biosynthesis. Unlike traditional methods, GWAS does not require prior biological knowledge and can accurately pinpoint loci, minimizing false positives. The process involves developing a diverse panel, rigorous phenotyping and genotyping, and sophisticated statistical analysis using various models and software tools. By scanning the entire genome, GWAS identifies specific loci or single nucleotide polymorphisms (SNPs) linked to target traits. When a causal SNP variant is not directly genotyped, GWAS identifies SNPs in linkage disequilibrium (LD) with the causal variant, mapping the genetic interval. The method begins with careful panel selection, phenotyping, and genotyping, controlling for environmental effects and utilizing Best Linear Unbiased Prediction (BLUP). High-correlation, high-heritability traits are prioritized. Various genotyping methods address confounders like population structure and kinship. Bonferroni correction (BC) prevents false positives, and significant associations are shown in Manhattan plots. Candidate genes are identified through LD analysis and fine mapping, followed by functional validation. GWAS offers critical insights for enhancing vegetable crop breeding efficiency and precision, driving breakthroughs through advanced methods.
Asunto(s)
Productos Agrícolas , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Productos Agrícolas/genética , Verduras/genética , Genoma de Planta , Sitios de Carácter Cuantitativo , FenotipoRESUMEN
Iron-refractory iron deficiency anaemia (IRIDA) is a rare autosomal recessive disorder, distinguished by hypochromic microcytic anaemia, low transferrin levels and inappropriately elevated hepcidin (HEPC) levels. It is caused by mutations in TMPRSS6 gene. Systematic screening of 500 pregnant women with iron deficiency anaemia having moderate to severe microcytosis with no other causes of anaemia were enrolled to rule out oral iron refractoriness. It identified a final cohort of 10 (2.15% prevalence) individuals with IRIDA phenotype. Haematological and biochemical analysis revealed significant differences between iron responders and iron non-responders, with iron non-responders showing lower haemoglobin, red blood cell count, serum iron and serum ferritin levels, along with elevated HEPC (9.47 ± 2.75 ng/mL, p = 0.0009) and erythropoietin (4.58 ± 4.07 µ/mL, p = 0.0196) levels. Genetic sequencing of the TMPRSS6 gene in this final cohort identified 10 novel variants, including seven missense and three frame-shift mutations, with four missense variants showing high functional impact defining the IRIDA phenotype. Structural analysis revealed significant damage caused by two variants (p.L83R and p.S235R). This study provides valuable insights into IRIDA among pregnant women in the Indian subcontinent, unveiling its underlying causes of unresponsiveness, genetic mechanisms and prevalence. Furthermore, research collaboration is essential to validate these findings and develop effective treatments.
Asunto(s)
Anemia Ferropénica , Proteínas de la Membrana , Serina Endopeptidasas , Humanos , Femenino , Embarazo , Anemia Ferropénica/genética , Proteínas de la Membrana/genética , Adulto , Serina Endopeptidasas/genética , Complicaciones Hematológicas del Embarazo/genética , India/epidemiología , Fenotipo , Mutación Missense , Hierro/metabolismo , Genotipo , Mutación , Adulto JovenRESUMEN
To examine whether circulating interleukin-6 (IL-6) levels (CirIL6) have a causal effect on blood pressure using Mendelian randomization (MR) methods. We used data from genome-wide association studies (GWAS) of European ancestry to obtain genetic instruments for circulating IL-6 levels and blood pressure measurements. We applied several robust MR methods to estimate the causal effects and to test for heterogeneity and pleiotropy. We found that circulating IL-6 had a significant positive causal effect on systolic blood pressure (SBP) and pulmonary arterial hypertension (PAH), but not on diastolic blood pressure (DBP) or hypertension. We found that as CirIL6 genetically increased, SBP increased using Inverse Variance Weighted (IVW) method (for ukb-b-20175, ß = 0.082 with SE = 0.032, P = 0.011; for ukb-a-360, ß = 0.075 with SE = 0.031, P = 0.014) and weighted median (WM) method (for ukb-b-20175, ß = 0.061 with SE = 0.022, P = 0.006; for ukb-a-360, ß = 0.065 with SE = 0.027, P = 0.014). Moreover, CirIL6 may be associated with an increased risk of PAH using WM method (odds ratio (OR) = 15.503, 95% CI, 1.025-234.525, P = 0.048), but not with IVW method. Our study provides novel evidence that circulating IL-6 has a causal role in the development of SBP and PAH, but not DBP or hypertension. These findings suggest that IL-6 may be a potential therapeutic target for preventing or treating cardiovascular diseases and metabolic disorders. However, more studies are needed to confirm the causal effects of IL-6 on blood pressure and to elucidate the underlying mechanisms and pathways.
Asunto(s)
Hipertensión , Interleucina-6 , Humanos , Presión Sanguínea/genética , Interleucina-6/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Hipertensión/genéticaRESUMEN
BACKGROUND: The shea tree is a well-known carbon sink in Africa that requires a sustainable conservation of its gene pool. However, the genetic structure of its population is not well studied, especially in Côte d'Ivoire. In this study, 333 superior shea tree genotypes conserved in situ in Côte d'Ivoire were collected and genotyped with the aim of investigating its genetic diversity and population structure to facilitate suitable conservation and support future breeding efforts to adapt to climate change effects. RESULTS: A total of 7,559 filtered high-quality single nucleotide polymorphisms (SNPs) were identified using the genotyping by sequencing technology. The gene diversity (HE) ranged between 0.1 to 0.5 with an average of 0.26, while the polymorphism information content (PIC) value ranged between 0.1 to 0.5 with an average of 0.24, indicating a moderate genetic diversity among the studied genotypes. The population structure model classified the 333 genotypes into three genetic groups (GP1, GP2, and GP3). GP1 contained shea trees that mainly originated from the Poro, Tchologo, and Hambol districts, while GP2 and GP3 contained shea trees collected from the Bagoué district. Analysis of molecular variance (AMOVA) identified 55% variance within populations and 45% variance within individuals, indicating a very low genetic differentiation (or very high gene exchange) between these three groups (FST = 0.004, gene flow Nm = 59.02). Morphologically, GP1 displayed spreading tree growth habit, oval nut shape, higher mean nut weight (10.62 g), wide leaf (limb width = 4.63 cm), and small trunk size (trunk circumference = 133.4 cm). Meanwhile, GP2 and GP3 showed similar morphological characteristics: erect and spreading tree growth habit, ovoid nut shape, lower mean nut weight (GP2: 8.89 g; GP3: 8.36 g), thin leaf (limb width = 4.45 cm), and large trunk size ( GP2: 160.5 cm, GP3: 149.1 cm). A core set of 100 superior shea trees, representing 30% of the original population size and including individuals from all four study districts, was proposed using the "maximum length sub-tree function" in DARwin v. 6.0.21. CONCLUSION: These findings provide new knowledge of the genetic diversity and population structure of Ivorian shea tree genetic resources for the design of effective collection and conservation strategies for the efficient use of inbreeding.
Asunto(s)
Variación Genética , Polimorfismo de Nucleótido Simple , Côte d'Ivoire , Genotipo , Genética de PoblaciónRESUMEN
BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.