Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484799

RESUMEN

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Anticuerpos de Dominio Único , Proteínas tau , Humanos , Epítopos/química , Epítopos/inmunología , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/inmunología , Péptidos/química , Péptidos/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Proteínas tau/química , Proteínas tau/inmunología
2.
J Biol Chem ; 299(6): 104740, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088134

RESUMEN

Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signaling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. While inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterized a pair of nanobodies that are specific for mouse Plexin-B1 and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signaling and provides a potential innovative route for therapeutic modulation of Plexin-B1.


Asunto(s)
Moléculas de Adhesión Celular , Semaforinas , Anticuerpos de Dominio Único , Animales , Ratones , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Moléculas de Adhesión Celular/metabolismo
3.
J Biol Chem ; 299(8): 104956, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356719

RESUMEN

The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.


Asunto(s)
Anticuerpos Monoclonales , Complemento C5 , Anticuerpos de Dominio Único , Humanos , Activación de Complemento , Complemento C5/antagonistas & inhibidores , Complemento C5/genética , Complejo de Ataque a Membrana del Sistema Complemento , Proteínas del Sistema Complemento/metabolismo
4.
J Biol Chem ; 299(11): 105278, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742917

RESUMEN

Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-ß-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring ß-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-ß-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-ß-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.


Asunto(s)
Región Variable de Inmunoglobulina , Humanos , Secuencia de Aminoácidos , Técnicas de Visualización de Superficie Celular , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Dominios Proteicos/genética , Escherichia coli/genética , Pliegue de Proteína
5.
J Biol Chem ; 299(1): 102769, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470427

RESUMEN

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 µM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.


Asunto(s)
Anticuerpos , Antígeno B7-1 , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica , Sitios de Unión , Cristalografía , Anticuerpos/química , Anticuerpos/metabolismo
6.
J Biol Chem ; 297(4): 101202, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537245

RESUMEN

Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.


Asunto(s)
Complejo Antígeno-Anticuerpo , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , COVID-19/virología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Alineación de Secuencia , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
J Biol Chem ; 295(26): 8746-8758, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32376685

RESUMEN

The complement system is a tightly controlled proteolytic cascade in the innate immune system, which tags intruding pathogens and dying host cells for clearance. An essential protein in this process is complement component C3. Uncontrolled complement activation has been implicated in several human diseases and disorders and has spurred the development of therapeutic approaches that modulate the complement system. Here, using purified proteins and several biochemical assays and surface plasmon resonance, we report that our nanobody, hC3Nb2, inhibits C3 deposition by all complement pathways. We observe that the hC3Nb2 nanobody binds human native C3 and its degradation products with low nanomolar affinity and does not interfere with the endogenous regulation of C3b deposition mediated by Factors H and I. Using negative stain EM analysis and functional assays, we demonstrate that hC3Nb2 inhibits the substrate-convertase interaction by binding to the MG3 and MG4 domains of C3 and C3b. Furthermore, we notice that hC3Nb2 is cross-reactive and inhibits the lectin and alternative pathway in murine serum. We conclude that hC3Nb2 is a potent, general, and versatile inhibitor of the human and murine complement cascades. Its cross-reactivity suggests that this nanobody may be valuable for analysis of complement activation within animal models of both acute and chronic diseases.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complemento C3/antagonistas & inhibidores , Anticuerpos de Dominio Único/farmacología , Animales , Complemento C3/inmunología , Convertasas de Complemento C3-C5/antagonistas & inhibidores , Convertasas de Complemento C3-C5/inmunología , Hemólisis/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Ovinos
8.
J Biol Chem ; 295(1): 55-68, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31699895

RESUMEN

Single-chain antibodies from camelids have served as powerful tools ranging from diagnostics and therapeutics to crystallization chaperones meant to study protein structure and function. In this study, we isolated a single-chain antibody from an Indian dromedary camel (ICab) immunized against a bacterial 14TM helix transporter, NorC, from Staphylococcus aureus We identified this antibody in a yeast display screen built from mononuclear cells isolated from the immunized camel and purified the antibody from Escherichia coli after refolding it from inclusion bodies. The X-ray structure of the antibody at 2.15 Å resolution revealed a unique feature within its CDR3 loop, which harbors a Zn2+-binding site that substitutes for a loop-stabilizing disulfide bond. We performed mutagenesis to compromise the Zn2+-binding site and observed that this change severely hampered antibody stability and its ability to interact with the antigen. The lack of bound Zn2+ also made the CDR3 loop highly flexible, as observed in all-atom simulations. Using confocal imaging of NorC-expressing E. coli spheroplasts, we found that the ICab interacts with the extracellular surface of NorC. This suggests that the ICab could be a valuable tool for detecting methicillin-resistant S. aureus strains that express efflux transporters such as NorC in hospital and community settings.


Asunto(s)
Anticuerpos Antibacterianos/química , Proteínas Bacterianas/inmunología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/inmunología , Anticuerpos de Dominio Único/química , Zinc/metabolismo , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/inmunología , Afinidad de Anticuerpos , Sitios de Unión , Camelus , Staphylococcus aureus Resistente a Meticilina/inmunología , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Estabilidad Proteica , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Zinc/química
9.
J Biol Chem ; 293(21): 8151-8160, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29632067

RESUMEN

Nicotinic acid adenosine dinucleotide phosphate (NAADP) is a Ca2+-mobilizing second messenger that regulates a wide range of biological activities. However, the mechanism of its biogenesis remains controversial. CD38 is the only enzyme known to catalyze NAADP synthesis from NADP and nicotinic acid. CD38-mediated catalysis requires an acidic pH, suggesting that NAADP may be produced in acidic endolysosomes, but this hypothesis is untested. In this study, using human cell lines, we specifically directed CD38 to the endolysosomal system and assessed cellular NAADP production. First, we found that nanobodies targeting various epitopes on the C-terminal domain of CD38 could bind to cell surface-localized CD38 and induce its endocytosis. We also found that CD38 internalization occurred via a clathrin-dependent pathway, delivered CD38 to the endolysosome, and elevated intracellular NAADP levels. We also created a CD38 variant for lysosome-specific expression, which not only withstood the degradative environment in the lysosome, but was also much more active than WT CD38 in elevating cellular NAADP levels. Supplementing CD38-expressing cells with nicotinic acid substantially increased cellular NAADP levels. These results demonstrate that endolysosomal CD38 can produce NAADP in human cells. They further suggest that CD38's compartmentalization to the lysosome may allow for its regulation via substrate access, rather than enzyme activation, thereby providing a reliable mechanism for regulating cellular NAADP production.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Calcio/metabolismo , Endocitosis , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , NADP/análogos & derivados , ADP-Ribosil Ciclasa 1/genética , Señalización del Calcio , Células HEK293 , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , NADP/metabolismo , Niacina/farmacología , Anticuerpos de Dominio Único/administración & dosificación , Vasodilatadores/farmacología
10.
J Biol Chem ; 293(35): 13626-13635, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29976754

RESUMEN

Listeria monocytogenes causes listeriosis, a potentially fatal food-borne disease. The condition is especially harmful to pregnant women. Listeria outbreaks can originate from diverse foods, highlighting the need for novel strategies to improve food safety. The first step in Listeria invasion is internalization of the bacteria, which is mediated by the interaction of the internalin family of virulence factors with host cell receptors. A crucial interaction for Listeria invasion of the placenta, and thus a target for therapeutic intervention, is between internalin B (InlB) and the receptor c-Met. Single-domain antibodies (VHH, also called nanobodies, or sdAbs) from camel heavy-chain antibodies are a novel solution for preventing Listeria infections. The VHH R303, R330, and R326 all bind InlB with high affinity; however, the molecular mechanism behind their mode of action was unknown. We demonstrate that despite a high degree of sequence and structural diversity, the VHH bind a single epitope on InlB. A combination of gentamicin protection assays and florescent microscopy establish that InlB-specific VHH inhibit Listeria invasion of HeLa cells. A high-resolution X-ray structure of VHH R303 in complex with InlB showed that the VHH binds at the c-Met interaction site on InlB, thereby acting as a competitive inhibitor preventing bacterial invasion. These results point to the potential of VHH as a novel class of therapeutics for the prevention of listeriosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Listeria monocytogenes/efectos de los fármacos , Listeriosis/prevención & control , Proteínas de la Membrana/metabolismo , Anticuerpos de Dominio Único/farmacología , Proteínas Bacterianas/química , Cristalografía por Rayos X , Células HeLa , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Listeriosis/microbiología , Proteínas de la Membrana/química , Modelos Moleculares , Conformación Proteica , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/metabolismo , Anticuerpos de Dominio Único/química , Factores de Virulencia/química , Factores de Virulencia/metabolismo
11.
J Biol Chem ; 293(16): 5909-5919, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29483191

RESUMEN

Bispecific antibodies have become important formats for therapeutic discovery. They allow for potential synergy by simultaneously engaging two separate targets and enable new functions that are not possible to achieve by using a combination of two monospecific antibodies. Antagonistic antibodies dominate drug discovery today, but only a limited number of agonistic antibodies (i.e. those that activate receptor signaling) have been described. For receptors formed by two components, engaging both of these components simultaneously may be required for agonistic signaling. As such, bispecific antibodies may be particularly useful in activating multicomponent receptor complexes. Here, we describe a biparatopic (i.e. targeting two different epitopes on the same target) format that can activate the endocrine fibroblast growth factor (FGF) 21 receptor (FGFR) complex containing ß-Klotho and FGFR1c. This format was constructed by grafting two different antigen-specific VH domains onto the VH and VL positions of an IgG, yielding a tetravalent binder with two potential geometries, a close and a distant, between the two paratopes. Our results revealed that the biparatopic molecule provides activities that are not observed with each paratope alone. Our approach could help address the challenges with heterogeneity inherent in other bispecific formats and could provide the means to adjust intramolecular distances of the antibody domains to drive optimal activity in a bispecific format. In conclusion, this format is versatile, is easy to construct and produce, and opens a new avenue for agonistic antibody discovery and development.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Sitios de Unión de Anticuerpos , Línea Celular , Epítopos/metabolismo , Humanos , Proteínas Klotho , Ligandos , Ratas , Anticuerpos de Cadena Única/metabolismo
12.
J Biol Chem ; 292(40): 16677-16687, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28842484

RESUMEN

Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Sistemas de Secreción Bacterianos/inmunología , Epítopos/inmunología , Shigella flexneri/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Camélidos del Nuevo Mundo , Evolución Molecular Dirigida , Epítopos/genética , Shigella flexneri/genética
13.
J Biol Chem ; 292(27): 11452-11465, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28526745

RESUMEN

The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. We identified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb 39 and Nb 53 inhibited ephrin-induced phosphorylation of the EphA4 protein in a cell-based assay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodies may deserve further evaluation as potential therapeutics in disorders in which EphA4-mediated signaling plays a role.


Asunto(s)
Afinidad de Anticuerpos , Receptor EphA4/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Línea Celular , Humanos , Ratones , Dominios Proteicos , Receptor EphA4/química , Anticuerpos de Dominio Único/química
14.
J Biol Chem ; 291(29): 15156-68, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226628

RESUMEN

A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors.


Asunto(s)
Camélidos del Nuevo Mundo/inmunología , Serina Proteasas/inmunología , Anticuerpos de Dominio Único/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Regiones Determinantes de Complementariedad , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Serina Proteasas/química , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Anticuerpos de Dominio Único/metabolismo , Especificidad por Sustrato , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/inmunología
15.
J Biol Chem ; 291(11): 5500-5511, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26728464

RESUMEN

A potent VEGF inhibitor with novel antibody architecture and antigen binding mode has been developed. The molecule, hereafter referred to as VEGF dual dAb (domain antibody), was evaluated in vitro for binding to VEGF and for potency in VEGF-driven models and compared with other anti-VEGF biologics that have been used in ocular anti-angiogenic therapeutic regimes. VEGF dual dAb is more potent than bevacizumab and ranibizumab for VEGF binding, inhibition of VEGF receptor binding assays (RBAs), and VEGF-driven in vitro models of angiogenesis and displays comparable inhibition to aflibercept (Eylea). VEGF dual dAb is dimeric, and each monomer contains two distinct anti-VEGF domain antibodies attached via linkers to a human IgG1 Fc domain. Mechanistically, the enhanced in vitro potency of VEGF dual dAb, in comparison to other anti-VEGF biologics, can be explained by increased binding stoichiometry. A consistent model of the target engagement has been built based on the x-ray complexes of each of the two isolated domain antibodies with the VEGF antigen.


Asunto(s)
Bevacizumab/farmacología , Ranibizumab/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/farmacología , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Dominio Único/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Cristalografía por Rayos X , Descubrimiento de Drogas , Células HEK293 , Humanos , Modelos Moleculares , Anticuerpos de Dominio Único/química , Porcinos , Factor A de Crecimiento Endotelial Vascular/química
16.
J Biol Chem ; 291(32): 16659-71, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27284008

RESUMEN

Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes.


Asunto(s)
LDL-Colesterol/metabolismo , Proproteína Convertasa 9/metabolismo , Proteolisis/efectos de los fármacos , Receptores de LDL/metabolismo , Anticuerpos de Dominio Único/farmacología , Animales , LDL-Colesterol/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Inhibidores de PCSK9 , Proproteína Convertasa 9/genética , Receptores de LDL/genética
17.
J Biol Chem ; 291(29): 15243-55, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226529

RESUMEN

Improving potencies through concomitant blockage of multiple epitopes and avid binding by fusing multiple (different) monovalent Nanobody building blocks via linker sequences into one multivalent polypeptide chain is an elegant alternative to affinity maturation. We explored a large and random formatting library of bivalent (combinations of two identical) and biparatopic (combinations of two different) Nanobodies for functional blockade of Pseudomonas aeruginosa PcrV. PcrV is an essential part of the P. aeruginosa type III secretion system (T3SS), and its oligomeric nature allows for multiple complex binding and blocking options. The library screening yielded a large number of promising biparatopic lead candidates, revealing significant (and non-trivial) preferences in terms of Nanobody building block and epitope bin combinations and orientations. Excellent potencies were confirmed upon further characterization in two different P. aeruginosa T3SS-mediated cytotoxicity assays. Three biparatopic Nanobodies were evaluated in a lethal mouse P. aeruginosa challenge pneumonia model, conferring 100% survival upon prophylactic administration and reducing lung P. aeruginosa burden by up to 2 logs. At very low doses, they protected the mice from P. aeruginosa infection-related changes in lung histology, myeloperoxidase production, and lung weight. Importantly, the most potent Nanobody still conferred protection after therapeutic administration up to 24 h post-infection. The concept of screening such formatting libraries for potency improvement is applicable to other targets and biological therapeutic platforms.


Asunto(s)
Antígenos Bacterianos/inmunología , Toxinas Bacterianas/inmunología , Técnicas Químicas Combinatorias/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Citotóxicas Formadoras de Poros/inmunología , Anticuerpos de Dominio Único/inmunología , Potencia de la Vacuna , Animales , Muerte Celular , Modelos Animales de Enfermedad , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Femenino , Humanos , Ratones Endogámicos C57BL , Modelos Moleculares , Neumonía/inmunología , Neumonía/microbiología , Neumonía/patología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología
18.
J Biol Chem ; 291(8): 3757-8, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26677225

RESUMEN

The last decade has seen enormous progress in the exploration and understanding of the behavior of molecules in their natural cellular environments at increasingly high spatial and temporal resolution. Advances in microscopy and the development of new fluorescent reagents as well as genetic editing techniques have enabled quantitative analysis of protein interactions, intracellular trafficking, metabolic changes, and signaling. Modern biochemistry now faces new and exciting challenges. Can traditionally "in vitro" experiments, e.g. analysis of protein folding and conformational transitions, be done in cells? Can the structure and behavior of endogenous and/or non-tagged recombinant proteins be analyzed and altered within the cell or in cellular compartments? How can molecules and their actions be studied mechanistically in tissues and organs? Is personalized cellular biochemistry a reality? This thematic series summarizes recent studies that illustrate some first steps toward successfully answering these modern biochemical questions. The first minireview focuses on utilization of three-dimensional primary enteroids and organoids for mechanistic studies of intestinal biology with molecular resolution. The second minireview describes application of single chain antibodies (nanobodies) for monitoring and regulating protein dynamics in vitro and in cells. The third minireview highlights advances in using NMR spectroscopy for analysis of protein folding and assembly in cells.


Asunto(s)
Bioquímica/métodos , Animales , Humanos , Organoides/metabolismo , Pliegue de Proteína , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo
19.
J Biol Chem ; 291(8): 3767-75, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26677230

RESUMEN

Nanobodies are the recombinant antigen-recognizing domains of the minimalistic heavy chain-only antibodies produced by camels and llamas. Nanobodies can be easily generated, effectively optimized, and variously derivatized with standard molecular biology protocols. These properties have triggered the recent explosion in the nanobody use in basic and clinical research. This review focuses on the emerging use of nanobodies for understanding and monitoring protein dynamics on the scales ranging from isolated protein domains to live cells, from nanoseconds to hours. The small size and high solubility make nanobodies uniquely suited for studying protein dynamics by NMR. The ability to produce conformation-sensitive nanobodies in cells enables studies that link structural dynamics of a target protein to its cellular behavior. The link between in vitro and in-cell dynamics, afforded by nanobodies, brings the analysis of such important events as receptor signaling, membrane protein trafficking, and protein interactions to the next level of resolution.


Asunto(s)
Proteínas de la Membrana/metabolismo , Sondas Moleculares/química , Transducción de Señal/fisiología , Anticuerpos de Dominio Único/química , Animales , Humanos , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
20.
J Biol Chem ; 291(24): 12641-12657, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27036939

RESUMEN

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.


Asunto(s)
Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Animales , Especificidad de Anticuerpos/inmunología , Sitios de Unión/inmunología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/inmunología , Células Cultivadas , Cristalografía por Rayos X , Mapeo Epitopo , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Células HL-60 , Humanos , Células Jurkat , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Modelos Moleculares , Unión Proteica/inmunología , Dominios Proteicos , Receptores CXCR4/metabolismo , Anticuerpos de Dominio Único/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA