Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(8): 1251-1263.e6, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36996811

RESUMEN

Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Nucleosomas/genética , Nucleosomas/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética
2.
Mol Cell ; 83(18): 3283-3302.e5, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738963

RESUMEN

Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.


Asunto(s)
Poro Nuclear , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte de Membrana
3.
Proc Natl Acad Sci U S A ; 121(3): e2300582121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190543

RESUMEN

Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 µm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.


Asunto(s)
Agua Potable , Microscopía , Humanos , Microplásticos , Plásticos , Algoritmos
4.
Trends Biochem Sci ; 47(2): 124-135, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281791

RESUMEN

Structure-based drug discovery (SBDD) is an indispensable approach for the design and optimization of new therapeutic agents. Here, we highlight the rapid progress that has turned cryo-electron microscopy (cryoEM) into an exceptional SBDD tool, and the wealth of new structural information it is providing for high-value pharmacological targets. We review key advantages of a technique that directly images vitrified biomolecules without the need for crystallization; both in terms of a broader array of systems that can be studied and the different forms of information it can provide, including heterogeneity and dynamics. We discuss near- and far-future developments, working in concert towards achieving the resolution and throughput necessary for cryoEM to make a widespread impact on the SBDD pipeline.


Asunto(s)
Microscopía por Crioelectrón , Descubrimiento de Drogas , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Descubrimiento de Drogas/métodos
5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38261343

RESUMEN

Cryo-Electron Microscopy (cryo-EM) is a widely used and effective method for determining the three-dimensional (3D) structure of biological molecules. For ab-initio Cryo-EM 3D reconstruction using single particle analysis (SPA), estimating the projection direction of the projection image is a crucial step. However, the existing SPA methods based on common lines are sensitive to noise. The error in common line detection will lead to a poor estimation of the projection directions and thus may greatly affect the final reconstruction results. To improve the reconstruction results, multiple candidate common lines are estimated for each pair of projection images. The key problem then becomes a combination optimization problem of selecting consistent common lines from multiple candidates. To solve the problem efficiently, a physics-inspired method based on a kinetic model is proposed in this work. More specifically, hypothetical attractive forces between each pair of candidate common lines are used to calculate a hypothetical torque exerted on each projection image in the 3D reconstruction space, and the rotation under the hypothetical torque is used to optimize the projection direction estimation of the projection image. This way, the consistent common lines along with the projection directions can be found directly without enumeration of all the combinations of the multiple candidate common lines. Compared with the traditional methods, the proposed method is shown to be able to produce more accurate 3D reconstruction results from high noise projection images. Besides the practical value, the proposed method also serves as a good reference for solving similar combinatorial optimization problems.


Asunto(s)
Imagenología Tridimensional , Microscopía por Crioelectrón , Cinética
6.
J Biol Chem ; 300(7): 107459, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857861

RESUMEN

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factores de Intercambio de Guanina Nucleótido , Proteína de Unión al GTP rac1 , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Unión Proteica , Conformación Proteica , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/química , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/química
7.
EMBO J ; 40(19): e108482, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459010

RESUMEN

Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.


Asunto(s)
Adenosina Trifosfato/química , Microscopía por Crioelectrón , Modelos Moleculares , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Hidrólisis , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Relación Estructura-Actividad
8.
J Virol ; : e0043624, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194243

RESUMEN

Medusavirus is a giant virus classified into an independent family of Mamonoviridae. Amoebae infected with medusavirus release immature particles in addition to virions. These particles were suggested to exhibit the maturation process of this virus, but the structure of these capsids during maturation remains unknown. Here, we apply a block-based reconstruction method in cryo-electron microscopy (cryo-EM) single particle analysis to these viral capsids, extending the resolution to 7-10 Å. The maps reveal a novel network composed of minor capsid proteins (mCPs) supporting major capsid proteins (MCPs). A predicted molecular model of the MCP fitted into the cryo-EM maps clarified the boundaries between the MCP and the underlining mCPs, as well as between the MCP and the outer spikes, and identified molecular interactions between the MCP and these components. Several structural changes of the mCPs under the fivefold vertices of the immature particles were observed, depending on the presence or absence of the underlying internal membrane. In addition, the lower part of the penton proteins on the fivefold vertices was also missing in mature virions. These dynamic conformational changes of mCPs indicate an important function in the maturation process of medusavirus.IMPORTANCEThe structural changes of giant virus capsids during maturation have not thus far been well clarified. Medusavirus is a unique giant virus in which infected amoebae release immature particles in addition to mature virus particles. In this study, we used cryo-electron microscopy to investigate immature and mature medusavirus particles and elucidate the structural changes of the viral capsid during the maturation process. In DNA-empty particles, the conformation of the minor capsid proteins changed dynamically depending on the presence or absence of the underlying internal membranes. In DNA-full particles, the lower part of the penton proteins was lost. This is the first report of structural changes of the viral capsid during the maturation process of giant viruses.

9.
Plant Physiol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077775

RESUMEN

Plasma membranes (PMs) are highly dynamic structures where lipids and proteins can theoretically diffuse freely. However, reports indicate that PM proteins do not freely diffuse within their planes but are constrained by cytoskeleton networks, though the mechanisms for how the cytoskeleton restricts lateral diffusion of plant PM proteins are unclear. Through single-molecule tracking, we investigated the dynamics of six Arabidopsis (Arabidopsis thaliana) PM proteins with diverse structures and found distinctions in sizes and dynamics among these proteins. Moreover, we showed that the cytoskeleton, particularly microtubules, limits the diffusion of PM proteins, including transmembrane and membrane-anchoring proteins. Interestingly, the microfilament skeleton regulates intracellular transport of endocytic cargo. Therefore, these findings indicate that the cytoskeleton controls signal transduction by limiting diffusion of PM proteins in specific membrane compartments and participating in transport of internalized cargo vesicles, thus actively regulating plant signal transduction.

10.
Nano Lett ; 24(31): 9535-9543, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38954740

RESUMEN

Nanosized ultrafine particles (UFPs) from natural and anthropogenic sources are widespread and pose serious health risks when inhaled by humans. However, tracing the inhaled UFPs in vivo is extremely difficult, and the distribution, translocation, and metabolism of UFPs remain unclear. Here, we report a label-free, machine learning-aided single-particle inductively coupled plasma mass spectrometry (spICP-MS) approach for tracing the exposure pathways of airborne magnetite nanoparticles (MNPs), including external emission sources, and distribution and translocation in vivo using a mouse model. Our results provide quantitative analysis of different metabolic pathways in mice exposed to MNPs, revealing that the spleen serves as the primary site for MNP metabolism (84.4%), followed by the liver (11.4%). The translocation of inhaled UFPs across different organs alters their particle size. This work provides novel insights into the in vivo fate of UFPs as well as a versatile and powerful platform for nanotoxicology and risk assessment.


Asunto(s)
Hígado , Aprendizaje Automático , Nanopartículas de Magnetita , Espectrometría de Masas , Tamaño de la Partícula , Animales , Ratones , Nanopartículas de Magnetita/química , Espectrometría de Masas/métodos , Hígado/metabolismo , Bazo/metabolismo , Material Particulado/análisis , Material Particulado/química , Distribución Tisular
11.
J Struct Biol ; 216(2): 108073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432598

RESUMEN

Cryo-electron microscopy has become a powerful tool to determine three-dimensional (3D) structures of rigid biological macromolecules from noisy micrographs with single-particle reconstruction. Recently, deep neural networks, e.g., CryoDRGN, have demonstrated conformational and compositional heterogeneity of complexes. However, the lack of ground-truth conformations poses a challenge to assess the performance of heterogeneity analysis methods. In this work, variational autoencoders (VAE) with three types of deep generative priors were learned for latent variable inference and heterogeneous 3D reconstruction via Bayesian inference. More specifically, VAEs with "Variational Mixture of Posteriors" priors (VampPrior-SPR), non-parametric exemplar-based priors (ExemplarPrior-SPR) and priors from latent score-based generative models (LSGM-SPR) were quantitatively compared with CryoDRGN. We built four simulated datasets composed of hypothetical continuous conformation or discrete states of the hERG K + channel. Empirical and quantitative comparisons of inferred latent representations were performed with affine-transformation-based metrics. These models with more informative priors gave better regularized, interpretable factorized latent representations with better conserved pairwise distances, less deformed latent distributions and lower within-cluster variances. They were also tested on experimental datasets to resolve compositional and conformational heterogeneity (50S ribosome assembly, cowpea chlorotic mottle virus, and pre-catalytic spliceosome) with comparable high resolution. Codes and data are available: https://github.com/benjamin3344/DGP-SPR.


Asunto(s)
Teorema de Bayes , Microscopía por Crioelectrón , Imagenología Tridimensional , Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura
12.
J Biol Chem ; 299(2): 102884, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36626983

RESUMEN

Vacuolar/archaeal-type ATPase (V/A-ATPase) is a rotary ATPase that shares a common rotary catalytic mechanism with FoF1 ATP synthase. Structural images of V/A-ATPase obtained by single-particle cryo-electron microscopy during ATP hydrolysis identified several intermediates, revealing the rotary mechanism under steady-state conditions. However, further characterization is needed to understand the transition from the ground state to the steady state. Here, we identified the cryo-electron microscopy structures of V/A-ATPase corresponding to short-lived initial intermediates during the activation of the ground state structure by time-resolving snapshot analysis. These intermediate structures provide insights into how the ground-state structure changes to the active, steady state through the sequential binding of ATP to its three catalytic sites. All the intermediate structures of V/A-ATPase adopt the same asymmetric structure, whereas the three catalytic dimers adopt different conformations. This is significantly different from the initial activation process of FoF1, where the overall structure of the F1 domain changes during the transition from a pseudo-symmetric to a canonical asymmetric structure (PNAS NEXUS, pgac116, 2022). In conclusion, our findings provide dynamical information that will enhance the future prospects for studying the initial activation processes of the enzymes, which have unknown intermediate structures in their functional pathway.


Asunto(s)
Adenosina Trifosfato , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Activación Enzimática , Conformación Proteica
13.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35255494

RESUMEN

Single-particle cryo-electron microscopy (cryo-EM) has become one of the mainstream technologies in the field of structural biology to determine the three-dimensional (3D) structures of biological macromolecules. Heterogeneous cryo-EM projection image classification is an effective way to discover conformational heterogeneity of biological macromolecules in different functional states. However, due to the low signal-to-noise ratio of the projection images, the classification of heterogeneous cryo-EM projection images is a very challenging task. In this paper, two novel distance measures between projection images integrating the reliability of common lines, pixel intensity and class averages are designed, and then a two-stage spectral clustering algorithm based on the two distance measures is proposed for heterogeneous cryo-EM projection image classification. In the first stage, the novel distance measure integrating common lines and pixel intensities of projection images is used to obtain preliminary classification results through spectral clustering. In the second stage, another novel distance measure integrating the first novel distance measure and class averages generated from each group of projection images is used to obtain the final classification results through spectral clustering. The proposed two-stage spectral clustering algorithm is applied on a simulated and a real cryo-EM dataset for heterogeneous reconstruction. Results show that the two novel distance measures can be used to improve the classification performance of spectral clustering, and using the proposed two-stage spectral clustering algorithm can achieve higher classification and reconstruction accuracy than using RELION and XMIPP.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Análisis por Conglomerados , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Relación Señal-Ruido
14.
Environ Sci Technol ; 58(18): 7977-7985, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38664901

RESUMEN

The pH of atmospheric aerosols is a key characteristic that profoundly influences their impacts on climate change, human health, and ecosystems. Despite widely performed aerosol pH research, determining the pH levels of individual atmospheric aerosol particles has been a challenge. This study presents a novel analytical technique that utilizes surface-enhanced Raman spectroscopy to assess the pH of individual ambient PM2.5-10 aerosol particles in conjunction with examining their hygroscopic behavior, morphology, and elemental compositions. The results revealed a substantial pH variation among simultaneously collected aerosol particles, ranging from 3.3 to 5.7. This variability is likely related to each particle's unique reaction and aging states. The extensive particle-to-particle pH variability suggests that atmospheric aerosols present at the same time and location can exhibit diverse reactivities, reaction pathways, phase equilibria, and phase separation properties. This pioneering study paves the way for in-depth investigations into particle-to-particle variability, size dependency, and detailed spatial and temporal variations of aerosol pH, thus deepening our understanding of atmospheric chemistry and its environmental implications.


Asunto(s)
Aerosoles , Material Particulado , Espectrometría Raman , Concentración de Iones de Hidrógeno , Material Particulado/análisis , Tamaño de la Partícula , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Atmósfera/química
15.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417300

RESUMEN

Usutu virus (USUV) is an emerging arbovirus in Europe that has been increasingly identified in asymptomatic humans and donated blood samples and is a cause of increased incidents of neuroinvasive human disease. Treatment or prevention options for USUV disease are currently nonexistent, the result of a lack of understanding of the fundamental elements of USUV pathogenesis. Here, we report two structures of the mature USUV virus, determined at a resolution of 2.4 Å, using single-particle cryogenic electron microscopy. Mature USUV is an icosahedral shell of 180 copies of envelope (E) and membrane (M) proteins arranged in the classic herringbone pattern. However, unlike previous reports of flavivirus structures, we observe virus subpopulations and differences in the fusion loop disulfide bond. Presence of a second, unique E glycosylation site could elucidate host interactions, contributing to the broad USUV tissue tropism. The structures provide a basis for exploring USUV interactions with glycosaminoglycans and lectins, the role of the RGD motif as a receptor, and the inability of West Nile virus therapeutic antibody E16 to neutralize the mature USUV strain SAAR-1776. Finally, we identify three lipid binding sites and predict key residues that likely participate in virus stability and flexibility during membrane fusion. Our findings provide a framework for the development of USUV therapeutics and expand the current knowledge base of flavivirus biology.


Asunto(s)
Flavivirus/química , Flavivirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Chlorocebus aethiops , Microscopía por Crioelectrón , Glicosilación , Humanos , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas de la Matriz Viral/química
16.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062836

RESUMEN

Common challenges in cryogenic electron microscopy, such as orientation bias, conformational diversity, and 3D misclassification, complicate single particle analysis and lead to significant resource expenditure. We previously introduced an in silico method using the maximum Feret diameter distribution, the Feret signature, to characterize sample heterogeneity of disc-shaped samples. Here, we expanded the Feret signature methodology to identify preferred orientations of samples containing arbitrary shapes with only about 1000 particles required. This method enables real-time adjustments of data acquisition parameters for optimizing data collection strategies or aiding in decisions to discontinue ineffective imaging sessions. Beyond detecting preferred orientations, the Feret signature approach can serve as an early-warning system for inconsistencies in classification during initial image processing steps, a capability that allows for strategic adjustments in data processing. These features establish the Feret signature as a valuable auxiliary tool in the context of single particle analysis, significantly accelerating the structure determination process.


Asunto(s)
Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Flujo de Trabajo , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Imagenología Tridimensional/métodos
17.
Trends Biochem Sci ; 44(10): 837-848, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31078399

RESUMEN

Cryo-electron microscopy (cryo-EM) has emerged as a powerful structure determination technique. Its most prolific branch is single particle analysis (SPA), a method being used in a growing number of laboratories worldwide to determine high-resolution protein structures. Cryo-electron tomography (cryo-ET) is another powerful approach that enables visualization of protein complexes in their native cellular environment. Despite the wide-ranging success of cryo-EM, there are many methodological aspects that could be improved. Those include sample preparation, sample screening, data acquisition, image processing, and structure validation. Future developments will increase the reliability and throughput of the technique and reduce the cost and skill level barrier for its adoption.


Asunto(s)
Microscopía por Crioelectrón , Proteínas/química , Conformación Proteica , Proteínas/metabolismo
18.
J Bacteriol ; 205(3): e0034022, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36749051

RESUMEN

Mycoplasma mobile is a fish pathogen that glides on solid surfaces by means of its own gliding machinery composed of internal and surface structures. In the present study, we focused on the function and structure of Gli123, a surface protein that is essential for the localization of other surface proteins. The amino acid sequence of Gli123, which is 1,128 amino acids long, contains lipoprotein-specific repeats. We isolated the native Gli123 protein from M. mobile cells and a recombinant protein, rGli123, from Escherichia coli. The isolated rGli123 complemented a nonbinding and nongliding mutant of M. mobile that lacked Gli123. Circular dichroism and rotary-shadowing electron microscopy (EM) showed that rGli123 has a structure that is not significantly different from that of the native protein. Rotary-shadowing EM suggested that Gli123 adopts two distinct globular and rod-like structures, depending on the ionic strength of the solution. Negative-staining EM coupled with single-particle analysis revealed that Gli123 forms a globular structure featuring a small protrusion with dimensions of approximately 15.7, 14.7, and 14.1 nm for the "height," major axis and minor axis, respectively. Small-angle X-ray scattering analyses indicated a rod-like structure composed of several tandem globular domains with total dimensions of approximately 34 nm in length and 6 nm in width. Both molecular structures were suggested to be dimers, based on the predicted molecular size and structure. Gli123 may have evolved by multiplication of repeating lipoprotein units and acquired a role for Gli521 and Gli349 assembly. IMPORTANCE Mycoplasmas are pathogenic bacteria that are widespread in animals. They are characterized by small cell and genome sizes but are equipped with unique abilities for infection, such as surface variation and gliding. Here, we focused on a surface-localizing protein named Gli123 that is essential for Mycoplasma mobile gliding. This study suggested that Gli123 undergoes drastic conformational changes between its rod-like and globular structures. These changes may be caused by a repetitive structure common in the surface proteins that is responsible for the modulation of the cell surface structure and related to the assembly process for the surface gliding machinery. An evolutionary process for surface proteins essential for this mycoplasma gliding was also suggested in the present study.


Asunto(s)
Proteínas Bacterianas , Mycoplasma , Proteínas Bacterianas/metabolismo , Mycoplasma/química , Mycoplasma/genética , Mycoplasma/metabolismo , Microscopía Electrónica , Proteínas de la Membrana
19.
J Struct Biol ; 215(4): 108040, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918761

RESUMEN

Correlated super-resolution cryo-fluorescence and cryo-electron microscopy (cryoEM) has been gaining popularity as a method to investigate biological samples with high resolution and specificity. A concern in this combined method (called SR-cryoCLEM), however, is whether and how fluorescence imaging prior to cryoEM acquisition is detrimental to sample integrity. In this report, we investigated the effect of high-dose laser light (405, 488, and 561 nm) irradiation on apoferritin samples prepared for cryoEM with excitation wavelengths commonly used in fluorescence microscopy, and compared these samples to controls that were kept in the dark. We found that laser illumination, of equal duration and intensity as used in cryo-single molecule localization microscopy (cryoSMLM) and in the presence of high concentrations of fluorescent protein, did not affect the achievable resolution in cryoEM, with final reconstructions reaching resolutions of âˆ¼ 1.8 Å regardless of the laser illumination. The finding that super-resolution fluorescence imaging of cryosamples prior to cryoEM data acquisition does not limit the achievable resolution suggests that super-resolution cryo-fluorescence microscopy and in situ structural biology using cryoEM are entirely compatible.


Asunto(s)
Biología Molecular , Imagen Óptica , Microscopía por Crioelectrón/métodos , Microscopía Fluorescente/métodos , Colorantes
20.
J Biol Chem ; 298(4): 101793, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248533

RESUMEN

Atmospheric-pressure plasmas have been widely applied for surface modification and biomedical treatment because of their ability to generate highly reactive radicals and charged particles. In negative-stain electron microscopy (Neg-EM) and cryogenic electron microscopy (cryo-EM), plasmas have been used to generate hydrophilic surfaces and eliminate surface contaminants to embed specimens onto grids. In addition, plasma treatment is a prerequisite for negative-stain and Quantifoil grids, whose surfaces are coated with hydrophobic amorphous carbon. Although the conventional glow discharge system has been used successfully in this purpose, there has been no further effort to take an advantage from the recent progress in the plasma field. Here, we developed a nonthermal atmospheric plasma jet system as an alternative tool for treatment of surfaces. The low-temperature plasma is a nonequilibrium system that has been widely used in biomedical area. Unlike conventional glow discharge systems, the plasma jet system successfully cleans and introduces hydrophilicity on the grid surface in the ambient environment without a vacuum. Therefore, we anticipate that the plasma jet system will have numerous benefits, such as convenience and versatility, as well as having potential applications in surface modification for both negative-stain and cryo-EM grid treatment.


Asunto(s)
Microscopía por Crioelectrón , Frío , Microscopía por Crioelectrón/instrumentación , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA