Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 46(3): e2300173, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38161246

RESUMEN

Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.


Asunto(s)
Enfermedades Óseas , Médula Ósea , Humanos , Médula Ósea/metabolismo , Osteogénesis , Osteoblastos/metabolismo , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Células Madre , Células de la Médula Ósea/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(16): e2120826120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040407

RESUMEN

In newborn humans, and up to approximately 2 y of age, calvarial bone defects can naturally regenerate. This remarkable regeneration potential is also found in newborn mice and is absent in adult mice. Since previous studies showed that the mouse calvarial sutures are reservoirs of calvarial skeletal stem cells (cSSCs), which are the cells responsible for calvarial bone regeneration, here we hypothesized that the regenerative potential of the newborn mouse calvaria is due to a significant amount of cSSCs present in the newborn expanding sutures. Thus, we tested whether such regenerative potential can be reverse engineered in adult mice by artificially inducing an increase of the cSSCs resident within the adult calvarial sutures. First, we analyzed the cellular composition of the calvarial sutures in newborn and in older mice, up to 14-mo-old mice, showing that the sutures of the younger mice are enriched in cSSCs. Then, we demonstrated that a controlled mechanical expansion of the functionally closed sagittal sutures of adult mice induces a significant increase of the cSSCs. Finally, we showed that if a calvarial critical size bone defect is created simultaneously to the mechanical expansion of the sagittal suture, it fully regenerates without the need for additional therapeutic aids. Using a genetic blockade system, we further demonstrate that this endogenous regeneration is mediated by the canonical Wnt signaling. This study shows that controlled mechanical forces can harness the cSSCs and induce calvarial bone regeneration. Similar harnessing strategies may be used to develop novel and more effective bone regeneration autotherapies.


Asunto(s)
Regeneración Ósea , Suturas Craneales , Humanos , Adulto , Ratones , Animales , Células Madre , Proliferación Celular , Suturas
3.
FASEB J ; 38(19): e70079, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39340242

RESUMEN

The jawbone periosteum, the easily accessible tissue responding to bone repair, has been overlooked in the recent development of cell therapy for jawbone defect reconstruction. Therefore, this study aimed to elucidate the in vitro and in vivo biological characteristics of jawbone periosteum-derived cells (jb-PDCs). For this purpose, we harvested the jb-PDCs from 8-week-old C57BL/6 mice. The in vitro cultured jb-PDCs (passages 1 and 3) contained skeletal stem/progenitor cells and exhibited clonogenicity and tri-lineage differentiation capacity. When implanted in vivo, the jb-PDCs (passage 3) showed evident ectopic bone formation after 4-week subcutaneous implantation, and active contribution to repair the critical-size jawbone defects in mice. Molecular profiling suggested that R-spondin 3 was strongly associated with the superior in vitro and in vivo osteogenic potentials of jb-PDCs. Overall, our study highlights the significance of comprehending the biological characteristics of the jawbone periosteum, which could pave the way for innovative cell-based therapies for the reconstruction of jawbone defects.


Asunto(s)
Diferenciación Celular , Maxilares , Ratones Endogámicos C57BL , Osteogénesis , Periostio , Animales , Periostio/citología , Osteogénesis/fisiología , Ratones , Maxilares/citología , Células Cultivadas , Masculino , Regeneración Ósea/fisiología , Trombospondinas
4.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738614

RESUMEN

Autosomal dominant PDGFRß gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRß exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRßD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRßD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRßD849V cells suggests that overgrowth in mice involves PDGFRßD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRßD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.


Asunto(s)
Mutación con Ganancia de Función , Mioblastos Esqueléticos/metabolismo , Mutación Puntual , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sustitución de Aminoácidos , Animales , Condrogénesis/genética , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mioblastos Esqueléticos/patología , Osteogénesis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética
5.
Biochem Biophys Res Commun ; 681: 165-172, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776748

RESUMEN

The renal subcapsular space provides an easily accessible, nutrition-rich pocket that supports engraftment, and as such, is often used as a site for stem and cancer cell transplantation. Renal capsule transplantation requires high technical requirements, the recipient mice have greater surgical damage, the mouse kidney is small and the kidney capsule is fragile, and the operation is easy to fail. The conventional method is not suitable for microvolume cell transplantation to this site in animals with a small kidney, such as mice, due to high risks of cell loss or dislocation or injury to the capsule. In this study, we developed and validated a modified approach for the mouse model of renal subcapsular transplantation of microvolume mouse skeletal stem cells (SSCs). We used a pipette with a refined tip to separate the capsule from the parenchyma. Moreover, we used cells suspended in Matrigel rather than a liquid carrier for transplantation. Using the modified method, we were able to transplant microvolume mouse SSCs as low as 0.2 µL beneath the mouse renal capsule with excellent reproducibility. After 4 weeks of in vivo culture, the implanted mouse SSCs formed grafts on the surface of the parenchyma at the target site of transplantation. Histological staining of the grafts indicated osteogenic, fibrogenic, and lipogenic differentiation. Micro-CT imaging of the grafts revealed bone formation. This modified model could be used to effectively transplant different types of microvolume cells to the renal subcapsular space when the donor cells are difficult to acquire or the recipient mice have a very small size kidney.

6.
J Anat ; 243(1): 90-99, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36899483

RESUMEN

The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.


Asunto(s)
Proteínas Hedgehog , Osteogénesis , Ratones , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteínas Hedgehog/metabolismo , Mandíbula/metabolismo , Cráneo , Cresta Neural
7.
Osteoporos Int ; 34(8): 1311-1321, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37069243

RESUMEN

Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal stem cells has been conducted over the last few decades, the identity and definition of the true skeletal stem cell population remains controversial. Due to technological advances, some progress has been made in the prospective separation and function research of purified skeletal stem cells. Here, we reviewed the recent progress of highly purified skeletal stem cells, their function in bone development and repair, and the impact of aging on skeletal stem cells. Various studies on animal and human models distinguished and isolated skeletal stem cells using different surface markers based on flow-cytometry-activated cell sorting. The roles of different types of skeletal stem cells in bone growth, remodeling, and repair are gradually becoming clear. Thanks to technological advances, SSCs can be specifically identified and purified for functional testing and molecular analysis. The basic features of SSCs and their roles in bone development and repair and the effects of aging on SSCs are gradually being elucidated. Future mechanistic studies can help to develop new therapeutic interventions to improve various types of skeletal diseases and enhance the regenerative potential of SSCs.


Asunto(s)
Enfermedades Óseas , Células Madre Mesenquimatosas , Animales , Humanos , Estudios Prospectivos , Células Madre/metabolismo , Huesos , Envejecimiento
8.
J Bone Miner Metab ; 41(2): 163-170, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36847866

RESUMEN

INTRODUCTION: Mouse skeletal stem cells (mSSCs, CD45-Ter119-Tie2-CD51+Thy-6C3-CD105-CD200+population) are identified in growth plates (GP) and play important roles in bone regeneration. However, the role of mSSCs in osteoporosis remains unclear. MATERIALS AND METHODS: The GP were stained by HE staining, and the mSSC lineage was analyzed by flow cytometry at postnatal of 14 days and 30 days in wild-type mice. The mice (8 weeks) were either sham operated or ovariectomy (OVX) and then sacrificed at 2, 4 and 8 w. The GP were stained by Movat staining, and mSSC lineage was analyzed. Then, mSSCs were sorted by fluorescence-activated cell sorting (FACS); the clonal ability, chondrogenic differentiation and osteogenic differentiation were evaluated, and the changed genes were analyzed by RNA-seq. RESULTS: The percentage of mSSCs were decreased with the narrow GP. Heights of GP were decreased significantly in 8w-ovx mice compared with 8w-sham mice. We found the percentage of mSSCs were decreased in mice at 2w after ovx, but the cell numbers were not changed. Further, the percentage and cell numbers of mSSCs were not changed at 4w and 8w after ovx. Importantly, the clonal ability, chondrogenic differentiation and osteogenic differentiation of mSSCs were impaired at 8w after ovx. We found 114 genes were down-regulated in mSSCs, including skeletal developmental genes such as Col10a1, Col2a1, Mef2c, Sparc, Matn1, Scube2 and Dlx5. On the contrary, 526 genes were up-regulated, including pro-inflammatory genes such as Csf1, Nfkbla, Nfatc2, Nfkb1 and Nfkb2. CONCLUSION: Function of mSSCs was impaired by up-regulating pro-inflammatory genes in ovx-induced osteoporosis.


Asunto(s)
Osteogénesis , Osteoporosis , Humanos , Femenino , Ratones , Animales , Osteogénesis/genética , Placa de Crecimiento , Células Madre , Diferenciación Celular , Ovariectomía , Proteínas de Unión al Calcio , Proteínas Adaptadoras Transductoras de Señales
9.
Bioessays ; 43(1): e2000202, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33155283

RESUMEN

An emerging concept is that quiescent mature skeletal cells provide an important cellular source for bone regeneration. It has long been considered that a small number of resident skeletal stem cells are solely responsible for the remarkable regenerative capacity of adult bones. However, recent in vivo lineage-tracing studies suggest that all stages of skeletal lineage cells, including dormant pre-adipocyte-like stromal cells in the marrow, osteoblast precursor cells on the bone surface and other stem and progenitor cells, are concomitantly recruited to the injury site and collectively participate in regeneration of the damaged skeletal structure. Lineage plasticity appears to play an important role in this process, by which mature skeletal cells can transform their identities into skeletal stem cell-like cells in response to injury. These highly malleable, long-living mature skeletal cells, readily available throughout postnatal life, might represent an ideal cellular resource that can be exploited for regenerative medicine.


Asunto(s)
Plasticidad de la Célula , Urgencias Médicas , Células de la Médula Ósea , Regeneración Ósea , Diferenciación Celular , Linaje de la Célula , Humanos , Células Madre
10.
Genesis ; 60(8-9): e23498, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35980285

RESUMEN

Craniofacial and appendicular bone homeostasis is dynamically regulated by a balance between bone formation and resorption by osteoblasts and osteoclasts, respectively. Despite the developments in multiple imaging techniques in bone biology, there are still technical challenges and limitations in the investigation of spatial/anatomical location of rare stem/progenitor cells and their molecular regulation in tooth and craniofacial bones of living animals. Recent advances in live animal imaging techniques for the craniofacial and dental apparatus can provide new insights in real time into bone stem/progenitor cell dynamics and function in vivo. Here, we review the current inventions and applications of the noninvasive intravital imaging technique and its practical uses and limitations in the analysis of stem/progenitor cells in craniofacial and dental apparatus in vivo. Furthermore, we also explore the potential applications of intravital microscopy in the dental field.


Asunto(s)
Huesos , Imagen Molecular , Animales , Microscopía Intravital , Imagen Molecular/métodos , Osteoclastos , Células Madre
11.
Stem Cells ; 39(3): 296-305, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33438789

RESUMEN

Skeletal progenitor/stem cells (SSCs) play a critical role in postnatal bone growth and maintenance. Telomerase (Tert) activity prevents cellular senescence and is required for maintenance of stem cells in self-renewing tissues. Here we investigated the role of mTert-expressing cells in postnatal mouse long bone and found that mTert expression is enriched at the time of adolescent bone growth. mTert-GFP+ cells were identified in regions known to house SSCs, including the metaphyseal stroma, growth plate, and the bone marrow. We also show that mTert-expressing cells are a distinct SSC population with enriched colony-forming capacity and contribute to multiple mesenchymal lineages, in vitro. In contrast, in vivo lineage-tracing studies identified mTert+ cells as osteochondral progenitors and contribute to the bone-forming cell pool during endochondral bone growth with a subset persisting into adulthood. Taken together, our results show that mTert expression is temporally regulated and marks SSCs during a discrete phase of transitional growth between rapid bone growth and maintenance.


Asunto(s)
Células Epiteliales/metabolismo , Células Madre/metabolismo , Telomerasa/metabolismo , Animales , Médula Ósea/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Ratones
12.
Biocell ; 46(5): 1157-1162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35475293

RESUMEN

Single-cell sequencing technologies have rapidly progressed in recent years, and been applied to characterize stem cells in a number of organs. Somatic (postnatal) stem cells are generally identified using combinations of cell surface markers and transcription factors. However, it has been challenging to define micro-heterogeneity within "stem cell" populations, each of which stands at a different level of differentiation. As stem cells become defined at a single-cell level, their differentiation path becomes clearly defined. Here, this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches, with an emphasis on practical considerations in stem cell biology.

13.
Clin Anat ; 35(6): 808-819, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654609

RESUMEN

Population aging is a global phenomenon and with it, the number of bone fractures increases due to higher incidences of osteoporosis. Bone fractures in the elderly increase the risk of bedridden status and mortality. Therefore, the control of osteoporosis and bone fracture is important for healthy life expectancy, and the fundamental understanding of its pathogenesis and its application in treatment is of great social significance. To solve these clinical problems, it is necessary to integrate clinical medicine and basic research. Bone regeneration after a fracture is an essential function of the living body. The prevailing view is that a small number of resident skeletal stem cells are solely responsible for regenerative capacity. Although these cells have long been considered to be in the bone marrow, it has been shown that they are also present in the growth plate and periosteum. More recently, distinct types of cells in the bone marrow, including bone marrow stromal cells, osteoblast progenitor cells, and osteoblasts, have been shown to participate in bone regeneration. Interestingly, the cellular plasticity of differentiated cells, rather than active recruitment of resident stem cell populations, may largely account for regeneration of bone tissues; terminally differentiated cells de-differentiate into a stem cell-like state, and then re-differentiate into regenerating bone. In this review, we discuss the clinical risk and preventive therapy of bone fractures and the current concept of bone regeneration in basic mechanical insights, which may prove useful to both clinicians and researchers.


Asunto(s)
Medicina Clínica , Fracturas Óseas , Osteoporosis , Anciano , Regeneración Ósea , Humanos , Osteoporosis/terapia , Periostio
14.
Dev Dyn ; 250(3): 377-392, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32813296

RESUMEN

Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFß/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.


Asunto(s)
Desarrollo Óseo/genética , Regeneración Ósea/genética , Fracturas Óseas , Modelos Genéticos , Vía de Señalización Wnt/genética , Animales , Fracturas Óseas/embriología , Fracturas Óseas/genética , Humanos , Ratones
15.
Stem Cells ; 38(1): 22-33, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408238

RESUMEN

In tissue engineering and regenerative medicine, stem cell-specifically, mesenchymal stromal/stem cells (MSCs)-therapies have fallen short of their initial promise and hype. The observed marginal, to no benefit, success in several applications has been attributed primarily to poor cell survival and engraftment at transplantation sites. MSCs have a metabolism that is flexible enough to enable them to fulfill their various cellular functions and remarkably sensitive to different cellular and environmental cues. At the transplantation sites, MSCs experience hostile environments devoid or, at the very least, severely depleted of oxygen and nutrients. The impact of this particular setting on MSC metabolism ultimately affects their survival and function. In order to develop the next generation of cell-delivery materials and methods, scientists must have a better understanding of the metabolic switches MSCs experience upon transplantation. By designing treatment strategies with cell metabolism in mind, scientists may improve survival and the overall therapeutic potential of MSCs. Here, we provide a comprehensive review of plausible metabolic switches in response to implantation and of the various strategies currently used to leverage MSC metabolism to improve stem cell-based therapeutics.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Humanos
16.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924333

RESUMEN

Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.


Asunto(s)
Osteoblastos/citología , Osteogénesis , Células Madre/citología , Animales , Huesos/citología , Huesos/embriología , Epigénesis Genética , Humanos , Osteogénesis/genética , Transducción de Señal
17.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502206

RESUMEN

The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor's bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing.


Asunto(s)
Curación de Fractura , Fracturas Óseas/terapia , Osteogénesis , Animales , Diáfisis , Ratones
18.
Curr Osteoporos Rep ; 18(6): 655-665, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33034805

RESUMEN

PURPOSE OF REVIEW: The adult skeleton contains stem cells involved in growth, homeostasis, and healing. Mesenchymal or skeletal stem cells are proposed to provide precursors to osteoblasts, chondrocytes, marrow adipocytes, and stromal cells. We review the evidence for existence and functionality of different skeletal stem cell pools, and the tools available for identifying or targeting these populations in mouse and human tissues. RECENT FINDINGS: Lineage tracing and single cell-based techniques in mouse models indicate that multiple pools of stem cells exist in postnatal bone. These include growth plate stem cells, stem and progenitor cells in the diaphysis, reticular cells that only form bone in response to injury, and injury-responsive periosteal stem cells. New staining protocols have also been described for prospective isolation of human skeletal stem cells. Several populations of postnatal skeletal stem and progenitor cells have been identified in mice, and we have an increasing array of tools to target these cells. Most Cre models lack a high degree of specificity to define single populations. Human studies are less advanced and require further efforts to refine methods for identifying stem and progenitor cells in adult bone.


Asunto(s)
Biomarcadores , Diferenciación Celular/fisiología , Células Madre/citología , Adipocitos/citología , Animales , Linaje de la Célula , Condrocitos/citología , Extremidades , Humanos , Ratones , Osteoblastos/citología
19.
Curr Osteoporos Rep ; 18(5): 597-605, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32794139

RESUMEN

PURPOSE OF REVIEW: Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal (MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development. RECENT FINDINGS: This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methylation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate development of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic drift in MSC populations during ageing and disease. Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss during ageing or osteoporosis.


Asunto(s)
Envejecimiento/genética , Diferenciación Celular/genética , Epigénesis Genética/genética , Células Madre Mesenquimatosas/citología , Osteoporosis/genética , Acetilación , Linaje de la Célula , Metilación de ADN , Represión Epigenética/genética , Regulación de la Expresión Génica/genética , Código de Histonas , Humanos , Metilación , Activación Transcripcional/genética , Soporte de Peso
20.
Curr Osteoporos Rep ; 18(3): 189-198, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32172443

RESUMEN

PURPOSE OF REVIEW: Skeletal stem cells (SSCs) are considered to play important roles in bone development and repair. These cells have been historically defined by their in vitro potential for self-renewal and differentiation into "trilineage" cells; however, little is known about their in vivo identity. Here, we discuss recent progress on SSCs and how they potentially contribute to bone development and repair. RECENT FINDINGS: Bone is composed of diverse tissues, which include cartilage and its perichondrium, cortical bone and its periosteum, and bone marrow and its trabecular bone and stromal compartment. We are now at the initial stage of understanding the precise identity of SSCs in each bone tissue. The emerging concept is that functionally dedicated SSCs are encased by their own unique cellular and extracellular matrix microenvironment, and locally support its own compartment. Diverse groups of SSCs are likely to work in concert to achieve development and repair of the highly functional skeletal organ.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/fisiología , Desarrollo Óseo/fisiología , Regeneración Ósea/fisiología , Diferenciación Celular , Adipocitos/citología , Médula Ósea , Células de la Médula Ósea/citología , Hueso Esponjoso/citología , Cartílago/citología , Linaje de la Célula , Condrocitos/citología , Hueso Cortical/citología , Placa de Crecimiento/citología , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA