Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(32): e2302151120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523553

RESUMEN

Polyelectrolyte complexation plays an important role in materials science and biology. The internal structure of the resultant polyelectrolyte complex (PEC) phase dictates properties such as physical state, response to external stimuli, and dynamics. Small-angle scattering experiments with X-rays and neutrons have revealed structural similarities between PECs and semidilute solutions of neutral polymers, where the total scattering function exhibits an Ornstein-Zernike form. In spite of consensus among different theoretical predictions, the existence of positional correlations between polyanion and polycation charges has not been confirmed experimentally. Here, we present small-angle neutron scattering profiles where the polycation scattering length density is matched to that of the solvent to extract positional correlations among anionic monomers. The polyanion scattering functions exhibit a peak at the inverse polymer screening radius of Coulomb interactions, q* ≈ 0.2 Å-1. This peak, attributed to Coulomb repulsions between the fragments of polyanions and their attractions to polycations, is even more pronounced in the calculated charge scattering function that quantifies positional correlations of all polymer charges within the PEC. Screening of electrostatic interactions by adding salt leads to the gradual disappearance of this correlation peak, and the scattering functions regain an Ornstein-Zernike form. Experimental scattering results are consistent with those calculated from the random phase approximation, a scaling analysis, and molecular simulations.

2.
J Biol Chem ; 300(3): 105717, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311178

RESUMEN

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.


Asunto(s)
Receptores AMPA , Humanos , Células HEK293 , Ligandos , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Receptores AMPA/genética , Receptores AMPA/metabolismo , Regulación Alostérica
3.
Proc Natl Acad Sci U S A ; 119(50): e2210669119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36480474

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) perform electrochemical signal transduction in organisms ranging from bacteria to humans. Among the prokaryotic pLGICs, there is architectural diversity involving N-terminal domains (NTDs) not found in eukaryotic relatives, exemplified by the calcium-sensitive channel (DeCLIC) from a Desulfofustis deltaproteobacterium, which has an NTD in addition to the canonical pLGIC structure. Here, we have characterized the structure and dynamics of DeCLIC through cryoelectron microscopy (cryo-EM), small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. In the presence and absence of calcium, cryo-EM yielded structures with alternative conformations of the calcium-binding site. SANS profiles further revealed conformational diversity at room temperature beyond that observed in static structures, shown through MD to be largely attributable to rigid-body motions of the NTD relative to the protein core, with expanded and asymmetric conformations improving the fit of the SANS data. This work reveals the range of motion available to the DeCLIC NTD and calcium-binding site, expanding the conformational landscape of the pLGIC family. Further, these findings demonstrate the power of combining low-resolution scattering, high-resolution structural, and MD simulation data to elucidate interfacial interactions that are highly conserved in the pLGIC family.


Asunto(s)
Calcio , Deltaproteobacteria , Canales Iónicos Activados por Ligandos , Microscopía por Crioelectrón
4.
J Biol Chem ; 299(11): 105337, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838175

RESUMEN

Heavy chain-only antibodies can offer advantages of higher binding affinities, reduced sizes, and higher stabilities than conventional antibodies. To address the challenge of SARS-CoV-2 coronavirus, a llama-derived single-domain nanobody C5 was developed previously that has high COVID-19 virus neutralization potency. The fusion protein C5-Fc comprises two C5 domains attached to a glycosylated Fc region of a human IgG1 antibody and shows therapeutic efficacy in vivo. Here, we have characterized the solution arrangement of the molecule. Two 1443 Da N-linked glycans seen in the mass spectra of C5-Fc were removed and the glycosylated and deglycosylated structures were evaluated. Reduction of C5-Fc with 2-mercaptoethylamine indicated three interchain Cys-Cys disulfide bridges within the hinge. The X-ray and neutron Guinier RG values, which provide information about structural elongation, were similar at 4.1 to 4.2 nm for glycosylated and deglycosylated C5-Fc. To explain these RG values, atomistic scattering modeling based on Monte Carlo simulations resulted in 72,737 and 56,749 physically realistic trial X-ray and neutron structures, respectively. From these, the top 100 best-fit X-ray and neutron models were identified as representative asymmetric solution structures, similar to that of human IgG1, with good R-factors below 2.00%. Both C5 domains were solvent exposed, consistent with the functional effectiveness of C5-Fc. Greater disorder occurred in the Fc region after deglycosylation. Our results clarify the importance of variable and exposed C5 conformations in the therapeutic function of C5-Fc, while the glycans in the Fc region are key for conformational stability in C5-Fc.


Asunto(s)
Anticuerpos Antivirales , Cadenas Pesadas de Inmunoglobulina , SARS-CoV-2 , Humanos , Inmunoglobulina G/química , Cadenas Pesadas de Inmunoglobulina/química , Modelos Moleculares , Polisacáridos , Anticuerpos Antivirales/química , Anticuerpos de Dominio Único/química
5.
J Biol Chem ; 299(2): 102799, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36528062

RESUMEN

Collagen triple helices are critical in the function of mannan-binding lectin (MBL), an oligomeric recognition molecule in complement activation. The MBL collagen regions form complexes with the serine proteases MASP-1 and MASP-2 in order to activate complement, and mutations lead to common immunodeficiencies. To evaluate their structure-function properties, we studied the solution structures of four MBL-like collagen peptides. The thermal stability of the MBL collagen region was much reduced by the presence of a GQG interruption in the typical (X-Y-Gly)n repeat compared to controls. Experimental solution structural data were collected using analytical ultracentrifugation and small angle X-ray and neutron scattering. As controls, we included two standard Pro-Hyp-Gly collagen peptides (POG)10-13, as well as three more peptides with diverse (X-Y-Gly)n sequences that represented other collagen features. These data were quantitatively compared with atomistic linear collagen models derived from crystal structures and 12,000 conformations obtained from molecular dynamics simulations. All four MBL peptides were bent to varying degrees up to 85o in the best-fit molecular dynamics models. The best-fit benchmark peptides (POG)n were more linear but exhibited a degree of conformational flexibility. The remaining three peptides showed mostly linear solution structures. In conclusion, the collagen helix is not strictly linear, the degree of flexibility in the triple helix depends on its sequence, and the triple helix with the GQG interruption showed a pronounced bend. The bend in MBL GQG peptides resembles the bend in the collagen of complement C1q and may be key for lectin pathway activation.


Asunto(s)
Colágeno , Activación de Complemento , Lectina de Unión a Manosa , Colágeno/química , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/metabolismo , Soluciones/química , Conformación Proteica , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Relación Estructura-Actividad , Estabilidad Proteica , Dispersión del Ángulo Pequeño , Difracción de Neutrones , Ultracentrifugación , Simulación de Dinámica Molecular , Cristalografía por Rayos X , Docilidad
6.
Small ; 20(33): e2311109, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597752

RESUMEN

Controlling the nanomorphology in bulk heterojunction photoactive blends is crucial for optimizing the performance and stability of organic photovoltaic (OPV) technologies. A promising approach is to alter the drying dynamics and consequently, the nanostructure of the blend film using solvent additives such as 1,8-diiodooctane (DIO). Although this approach is demonstrated extensively for OPV systems incorporating fullerene-based acceptors, it is unclear how solvent additive processing influences the morphology and stability of nonfullerene acceptor (NFA) systems. Here, small angle neutron scattering (SANS) is used to probe the nanomorphology of two model OPV systems processed with DIO: a fullerene-based system (PBDB-T:PC71BM) and an NFA-based system (PBDB-T:ITIC). To overcome the low intrinsic neutron scattering length density contrast in polymer:NFA blend films, the synthesis of a deuterated NFA analog (ITIC-d52) is reported. Using SANS, new insights into the nanoscale evolution of fullerene and NFA-based systems are provided by characterizing films immediately after fabrication, after thermal annealing, and after aging for 1 year. It is found that DIO processing influences fullerene and NFA-based systems differently with NFA-based systems characterized by more phase-separated domains. After long-term aging, SANS reveals both systems demonstrate some level of thermodynamic induced domain coarsening.

7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504004

RESUMEN

Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.


Asunto(s)
Proteínas Bacterianas/química , Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/química , Neutrones , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño , Cianobacterias/metabolismo , Simulación de Dinámica Molecular
8.
Sci Technol Adv Mater ; 25(1): 2315015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455384

RESUMEN

We report investigations of the magnetic textures in periodic multilayers [Pt(1 nm)/(CoFeB(0.8 nm)/Ru(1.4 nm)]10 using polarised neutron reflectometry (PNR) and small-angle neutron scattering (SANS). The multilayers are known to host skyrmions stabilized by Dzyaloshinskii-Moriya interactions induced by broken inversion symmetry and spin-orbit coupling at the asymmetric interfaces. From depth-dependent PNR measurements, we observed well-defined structural features and obtained the layer-resolved magnetization profiles. The in-plane magnetization of the CoFeB layers calculated from fitting of the PNR profiles is found to be in excellent agreement with magnetometry data. Using SANS as a bulk probe of the entire multilayer, we observe long-period magnetic stripe domains and skyrmion ensembles with full orientational disorder at room temperature. No sign of skyrmions is found below 250 K, which we suggest is due to an increase of an effective magnetic anisotropy in the CoFeB layer on cooling that suppresses skyrmion stability. Using polarised SANS at room temperature, we prove the existence of pure Néel-type windings in both stripe domain and skyrmion regimes. No Bloch-type winding admixture, i.e. an indication for hybrid windings, is detected within the measurement sensitivity, in good agreement with expectations according to our micromagnetic modelling of the multilayers. Our findings using neutron techniques provide valuable microscopic insights into the rich magnetic behavior of skyrmion-hosting multilayers, which are essential for the advancement of future skyrmion-based spintronic devices.


The study presents a unique investigation of [Pt/CoFeB/Ru]10 multilayers, revealing suppressed skyrmion phases, intricate magnetic domain structures, and Néel-type domain walls, providing crucial insights for spintronic applications.

9.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474026

RESUMEN

Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.


Asunto(s)
Cianobacterias , Synechocystis , Luz , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Fotosíntesis , Cromatografía en Gel , Synechocystis/metabolismo
10.
Biophys J ; 122(12): 2456-2474, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37147801

RESUMEN

The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.


Asunto(s)
Actinas , Cadherinas , Cadherinas/metabolismo , Actinas/metabolismo , Vinculina/metabolismo , alfa Catenina/química , Unión Proteica , Citoesqueleto de Actina/metabolismo , Adhesión Celular
11.
J Struct Biol ; 215(4): 108028, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37704014

RESUMEN

NADPH-dependent assimilatory sulfite reductase (SiR) from Escherichia coli performs a six-electron reduction of sulfite to the bioavailable sulfide. SiR is composed of a flavoprotein (SiRFP) reductase subunit and a hemoprotein (SiRHP) oxidase subunit. There is no known high-resolution structure of SiR or SiRFP, thus we do not yet fully understand how the subunits interact to perform their chemistry. Here, we used small-angle neutron scattering to understand the impact of conformationally restricting the highly mobile SiRFP octamer into an electron accepting (closed) or electron donating (open) conformation, showing that SiR remains active, flexible, and asymmetric even with these conformational restrictions. From these scattering data, we model the first solution structure of SiRFP. Further, computational modeling of the N-terminal 52 amino acids that are responsible for SiRFP oligomerization suggests an eight-helical bundle tethers together the SiRFP subunits to form the SiR core. Finally, mass spectrometry analysis of the closed SiRFP variant show that SiRFP is capable of inter-molecular domain crossover, in which the electron donating domain from one polypeptide is able to interact directly with the electron accepting domain of another polypeptide. This structural characterization suggests that SiR performs its high-volume electron transfer through both inter- and intramolecular pathways between SiRFP domains and, thus, cis or trans transfer from reductase to oxidase subunits. Such highly redundant potential for electron transfer makes this system a potential target for designing synthetic enzymes.


Asunto(s)
Escherichia coli , Oxidorreductasas , Sulfito Reductasa (NADPH)/química , NADP/metabolismo , Escherichia coli/metabolismo , Péptidos
12.
Small ; 19(43): e2300912, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37395635

RESUMEN

A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.

13.
Mol Pharm ; 20(9): 4698-4713, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37549226

RESUMEN

Monoclonal antibodies (mAbs) are particularly relevant for therapeutics due to their high specificity and versatility, and mAb-based drugs are hence used to treat numerous diseases. The increased patient compliance of self-administration motivates the formulation of products for subcutaneous (SC) administration. The associated challenge is to formulate highly concentrated antibody solutions to achieve a significant therapeutic effect, while limiting their viscosity and preserving their physicochemical stability. Protein-protein interactions (PPIs) are in fact the root cause of several potential problems concerning the stability, manufacturability, and delivery of a drug product. The understanding of macroscopic viscosity requires an in-depth knowledge on protein diffusion, PPIs, and self-association/aggregation. Here, we study the self-diffusion of different mAbs of the IgG1 subtype in aqueous solution as a function of the concentration and temperature by quasi-elastic neutron scattering (QENS). QENS allows us to probe the short-time self-diffusion of the molecules and therefore to determine the hydrodynamic mAb cluster size and to gain information on the internal mAb dynamics. Small-angle neutron scattering (SANS) is jointly employed to probe structural details and to understand the nature and intensity of PPIs. Complementary information is provided by molecular dynamics (MD) simulations and viscometry, thus obtaining a comprehensive picture of mAb diffusion.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Humanos , Anticuerpos Monoclonales/química , Viscosidad , Inmunoglobulina G/química , Dispersión del Ángulo Pequeño , Simulación de Dinámica Molecular , Soluciones
14.
Pharm Res ; 40(6): 1459-1477, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959413

RESUMEN

The present review summarizes the use of differential scanning calorimetry (DSC) and scattering techniques in the context of protein formulation design and characterization. The scattering techniques include wide angle X-ray diffractometry (XRD), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). While DSC is valuable for understanding thermal behavior of the excipients, XRD provides critical information about physical state of solutes during freezing, annealing and in the final lyophile. However, as these techniques lack the sensitivity to detect biomolecule-related transitions, complementary characterization techniques such as small-angle scattering can provide valuable insights.


Asunto(s)
Dispersión del Ángulo Pequeño , Difracción de Rayos X
15.
Proc Natl Acad Sci U S A ; 117(10): 5168-5175, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094183

RESUMEN

Uncharged bottlebrush polymer melts and highly charged polyelectrolytes in solution exhibit correlation peaks in scattering measurements and simulations. Given the striking superficial similarities of these scattering features, there may be a deeper structural interrelationship in these chemically different classes of materials. Correspondingly, we constructed a library of isotopically labeled bottlebrush molecules and measured the bottlebrush correlation peak position [Formula: see text] by neutron scattering and in simulations. We find that the correlation length scales with the backbone concentration, [Formula: see text], in striking accord with the scaling of ξ with polymer concentration cP in semidilute polyelectrolyte solutions [Formula: see text] The bottlebrush correlation peak broadens with decreasing grafting density, similar to increasing salt concentration in polyelectrolyte solutions. ξ also scales with sidechain length to a power in the range of 0.35-0.44, suggesting that the sidechains are relatively collapsed in comparison to the bristlelike configurations often imagined for bottlebrush polymers.

16.
Proc Natl Acad Sci U S A ; 117(13): 7004-7010, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32179691

RESUMEN

Protein mobility at solid-liquid interfaces can affect the performance of applications such as bioseparations and biosensors by facilitating reorganization of adsorbed protein, accelerating molecular recognition, and informing the fundamentals of adsorption. In the case of ion-exchange chromatographic beads with small, tortuous pores, where the existence of surface diffusion is often not recognized, slow mass transfer can result in lower resin capacity utilization. We demonstrate that accounting for and exploiting protein surface diffusion can alleviate the mass-transfer limitations on multiple significant length scales. Although the surface diffusivity has previously been shown to correlate with ionic strength (IS) and binding affinity, we show that the dependence is solely on the binding affinity, irrespective of pH, IS, and resin ligand density. Different surface diffusivities give rise to different protein distributions within the resin, as characterized using confocal microscopy and small-angle neutron scattering (length scales of micrometer and nanometer, respectively). The binding dependence of surface diffusion inspired a protein-loading approach in which the binding affinity, and hence the surface diffusivity, is modulated by varying IS. Such gradient loading increased the protein uptake efficiency by up to 43%, corroborating the importance of protein surface diffusion in protein transport in ion-exchange chromatography.


Asunto(s)
Resinas de Intercambio Iónico/química , Modelos Químicos , Proteínas/química , Difusión
17.
Proc Natl Acad Sci U S A ; 117(45): 28026-28035, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093201

RESUMEN

The periplasmic chaperone network ensures the biogenesis of bacterial outer membrane proteins (OMPs) and has recently been identified as a promising target for antibiotics. SurA is the most important member of this network, both due to its genetic interaction with the ß-barrel assembly machinery complex as well as its ability to prevent unfolded OMP (uOMP) aggregation. Using only binding energy, the mechanism by which SurA carries out these two functions is not well-understood. Here, we use a combination of photo-crosslinking, mass spectrometry, solution scattering, and molecular modeling techniques to elucidate the key structural features that define how SurA solubilizes uOMPs. Our experimental data support a model in which SurA binds uOMPs in a groove formed between the core and P1 domains. This binding event results in a drastic expansion of the rest of the uOMP, which has many biological implications. Using these experimental data as restraints, we adopted an integrative modeling approach to create a sparse ensemble of models of a SurA•uOMP complex. We validated key structural features of the SurA•uOMP ensemble using independent scattering and chemical crosslinking data. Our data suggest that SurA utilizes three distinct binding modes to interact with uOMPs and that more than one SurA can bind a uOMP at a time. This work demonstrates that SurA operates in a distinct fashion compared to other chaperones in the OMP biogenesis network.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Biológicos , Periplasma/metabolismo , Pliegue de Proteína
18.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762487

RESUMEN

Magnetite and gallium substituted cuboferrites with a composition of GaxFe3-xO4 (0 ≤ x ≤ 1.4) were fabricated by thermal decomposition from acetylacetonate salts. The effect of Ga3+ cation substitution on the structural and thermomagnetic behavior of 4-12 nm sized core-shell particles was explored by X-ray and neutron diffraction, small angle neutron scattering, transmission electron microscopy, Mössbauer spectroscopy, and calorimetric measurements. Superparamagnetic (SPM) behavior and thermal capacity against increasing gallium concentration in nanoferrites were revealed. The highest heat capacity typical for Fe3O4@Ga0.6Fe2.4O4 and Ga0.6Fe2.4O4@Fe3O4 is accompanied by a slight stimulation of fibroblast culture growth and inhibition of HeLa cell growth. The observed effect is concentration dependent in the range of 0.01-0.1 mg/mL and particles of Ga0.6Fe2.4O4@Fe3O4 design have a greater effect on cells. Observed magnetic heat properties, as well as interactions with tumor and healthy cells, provide a basis for further biomedical research to use the proposed nanoparticle systems in cancer thermotherapy (magnetic hyperthermia).

19.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298812

RESUMEN

Here, we describe the behavior of mixtures of stearic acid (SA) and its hydroxylated counterpart 12-hydroxystearic acid (12-HSA) in aqueous mixtures at room temperature as a function of the 12-HSA/SA mole ratio R. The morphologies of the self-assembled aggregates are obtained through a multi-structural approach that combines confocal and cryo-TEM microscopies with small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS) measurements, coupled with rheology measurements. Fatty acids are solubilized by an excess of ethanolamine counterions, so that their heads are negatively charged. A clear trend towards partitioning between the two types of fatty acids is observed, presumably driven by the favorable formation of a H-bond network between hydroxyl OH function on the 12th carbon. For all R, the self-assembled structures are locally lamellar, with bilayers composed of crystallized and strongly interdigitated fatty acids. At high R, multilamellar tubes are formed. The doping via a low amount of SA molecules slightly modifies the dimensions of the tubes and decreases the bilayer rigidity. The solutions have a gel-like behavior. At intermediate R, tubes coexist in solution with helical ribbons. At low R, local partitioning also occurs, and the architecture of the self-assemblies associates the two morphologies of the pure fatty acids systems: they are faceted objects with planar domains enriched in SA molecules, capped with curved domains enriched in 12-HSA molecules. The rigidity of the bilayers is strongly increased, as well their storage modulus. The solutions remain, however, viscous fluids in this regime.


Asunto(s)
Ácidos Grasos , Ácidos Esteáricos , Temperatura , Ácidos Esteáricos/química , Ácidos Grasos/química , Microscopía , Micelas
20.
Molecules ; 28(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37959833

RESUMEN

Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.


Asunto(s)
Fotosíntesis , Proteínas , Dispersión del Ángulo Pequeño , Microscopía por Crioelectrón , Difracción de Rayos X , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA