Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602389

RESUMEN

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Asunto(s)
Hemípteros , Orthobunyavirus , Virus ARN , Animales , Femenino , Filogenia , Insectos , Virus ARN/genética
2.
Biochem Biophys Res Commun ; 729: 150372, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981400

RESUMEN

The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.


Asunto(s)
Dipéptidos , Lípidos , Nanopartículas , ARN Interferente Pequeño , Concentración de Iones de Hidrógeno , ARN Interferente Pequeño/química , ARN Interferente Pequeño/administración & dosificación , Nanopartículas/química , Lípidos/química , Dipéptidos/química , Humanos , Células HeLa
3.
Plant Cell Environ ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798197

RESUMEN

The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.

4.
Exp Eye Res ; 242: 109880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552713

RESUMEN

Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula. The formation of macular neovascularization (MNV) and subretinal fibrosis of AMD is the most classic cause of the loss of vision in older adults worldwide. While the underlying causes of MNV and subretinal fibrosis remain elusive, the common feature of many common retinal diseases is changes the proportions of protein deposition in extracellular matrix (ECM) when compared to normal tissue. In ECM, fibronectin (FN) is a crucial component and plays a pivotal part not only in fibrotic diseases but also in the process of angiogenesis. The study aims to understand the role of ligand FN and its common integrin receptor α5ß1 on MNV, and to understand the molecular mechanism involved. To study this, the laser-induced MNV mouse model and the rhesus macaque choroid-retinal endothelial cell line (RF/6A) chemical hypoxia mode were established, and the FN-α5ß1 expression levels were detected by immunohistochemistry (IHC) and quantitative real-time PCR analysis (qRT-PCR). Fibronectin expression was silenced using small interfering RNA (siRNA) targeting FN. The tube formation and vitro scratch assays were used to assess the ability to form blood vessels and cell migration. To measure the formation of MNV, immunofluorescence, and Western blot assays were used. These results revealed that the expressions of FN and integrin α5ß1 were distinctly increased in the laser-induced MNV mouse model and in the RF/6A cytochemically induced hypoxia model, and the expression tendency was identical. After the use of FN siRNA, the tube formation and migration abilities of the RF/6A cells were lower, the ability of endothelial cells to proliferate was confined and the scope of damage caused by the laser in animal models was significantly cut down. In addition, FN gene knockdown dramatically inhibited the expression of Wnt/ß-catenin signal. The interaction of FN with the integrin receptor α5ß1 in the constructed model, which may act through the Wnt/ß-catenin signaling pathway, was confirmed in this study. In conclusion, FN may be a potential new molecular target for the prevention and treatment of subretinal fibrosis and MNV.


Asunto(s)
Modelos Animales de Enfermedad , Fibronectinas , Integrina alfa5beta1 , Ratones Endogámicos C57BL , Vía de Señalización Wnt , Animales , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfa5beta1/genética , Ratones , Vía de Señalización Wnt/fisiología , Movimiento Celular/fisiología , Western Blotting , Macaca mulatta , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , beta Catenina/metabolismo , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , Células Cultivadas
5.
Curr Atheroscler Rep ; 26(4): 111-118, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311667

RESUMEN

PURPOSE OF REVIEW: Lipoprotein(a) is an important causal risk factor for cardiovascular disease but currently no available medication effectively reduces lipoprotein(a). This review discusses recent findings regarding lipoprotein(a) as a causal risk factor and therapeutic target in cardiovascular disease, it reviews current clinical recommendations, and summarizes new lipoprotein(a) lowering drugs. RECENT FINDINGS: Epidemiological and genetic studies have established lipoprotein(a) as a causal risk factor for cardiovascular disease and mortality. Guidelines worldwide now recommend lipoprotein(a) to be measured once in a lifetime, to offer patients with high lipoprotein(a) lifestyle advise and initiate other cardiovascular medications. Clinical trials including antisense oligonucleotides, small interfering RNAs, and an oral lipoprotein(a) inhibitor have shown great effect on lowering lipoprotein(a) with reductions up to 106%, without any major adverse effects. Recent clinical phase 1 and 2 trials show encouraging results and ongoing phase 3 trials will hopefully result in the introduction of specific lipoprotein(a) lowering drugs to lower the risk of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Factores de Riesgo de Enfermedad Cardiaca , Lipoproteína(a)/efectos de los fármacos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , Factores de Riesgo
6.
Environ Sci Technol ; 58(31): 13856-13865, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39066708

RESUMEN

Rising global populations have amplified food scarcity and ushered in the development of genetically modified (GM) crops containing small interference RNAs (siRNAs) that control gene expression to overcome these challenges. The use of RNA interference (RNAi) in agriculture remains controversial due to uncertainty regarding the unintended release of genetic material and downstream nontarget effects, which have not been assessed in environmental bacteria to date. To evaluate the impacts of siRNAs used in agriculture on environmental bacteria, this study assessed microbial growth and viability as well as transcription activity with and without the presence of environmental stressors. Results showed a statistically significant reduction in growth capacity and maximum biomass achieved when bacteria are exposed to siRNAs alone and with additional external stress (p < 0.05). Further transcriptomic analysis demonstrated that nutrient cycling gene activities were found to be consistently and significantly altered following siRNA exposure, particularly among carbon (xylA, FBPase, limEH, Chitinase, rgl, rgh, rgaE, mannanase, ara) and nitrogen (ureC, nasA, narB, narG, nirK) cycling genes (p < 0.05). Decreases in carbon cycling gene transcription profiles were generally significantly enhanced when siRNA exposure was coupled with nutrient or antimicrobial stress. Collectively, findings suggest that certain conditions facilitate the uptake of siRNAs from their surrounding environments that can negatively affect bacterial growth and gene expression activity, with uncertain downstream impacts on ecosystem homeostasis.


Asunto(s)
Bacterias , ARN Interferente Pequeño , Bacterias/metabolismo , Bacterias/genética , Regulación Bacteriana de la Expresión Génica
7.
Mol Biol Rep ; 51(1): 737, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874790

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Terapia Genética/métodos , Animales , Resistencia a Antineoplásicos/genética
8.
Macromol Rapid Commun ; 45(15): e2400129, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38778746

RESUMEN

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.


Asunto(s)
Celulosa , Muramidasa , Infarto del Miocardio , Nanofibras , Nanopartículas , Muramidasa/química , Muramidasa/metabolismo , Animales , Ratas , Nanofibras/química , Infarto del Miocardio/patología , Celulosa/química , Nanopartículas/química , Amiloide/química , ARN/química , Regeneración/efectos de los fármacos , Miocardio/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
9.
Biol Pharm Bull ; 47(2): 469-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38383000

RESUMEN

Polyethylene glycol (PEG)-modified (PEGylated) cationic liposomes are frequently used as delivery vehicles for small interfering RNA (siRNA)-based drugs because of their ability to encapsulate/complex with siRNA and prolong the circulation half-life in vivo. Nevertheless, we have reported that subsequent intravenous (IV) injections of siRNA complexed with PEGylated cationic liposomes (PLpx) induces the production of anti-PEG immunoglobulin M (IgM), which accelerates the blood clearance of subsequent doses of PLpx and other PEGylated products. In this study, it is interesting that splenectomy (removal of spleen) did not prevent anti-PEG IgM induction by IV injection of PLpx. This indicates that B cells other than the splenic version are involved in anti-PEG IgM production under these conditions. In vitro and in vivo studies have shown that peritoneal cells also secrete anti-PEG IgM in response to the administration of PLpx. Interleukin-6 (IL-6) is a glycoprotein that is secreted by peritoneal immune cells and has been detected in response to the in vivo administration of PLpx. These observations indicate that IV injection of PLpx stimulates the proliferation/differentiation of peritoneal PEG-specific B cells into plasma cells via IL-6 induction, which results in the production of anti-PEG IgM from the peritoneal cavity of mice. Our results suggest the mutual contribution of peritoneal B cells as a potent anti-PEG immune response against PLpx.


Asunto(s)
Liposomas , Polietilenglicoles , Ratones , Animales , ARN Interferente Pequeño , Inmunoglobulina M , Interleucina-6
10.
J Nanobiotechnology ; 22(1): 348, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898486

RESUMEN

Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.


Asunto(s)
Inmunoterapia , Neoplasias Hepáticas , ARN Interferente Pequeño , Animales , Ratones , Inmunoterapia/métodos , Humanos , Neoplasias Hepáticas/terapia , Línea Celular Tumoral , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Proteínas de Unión al ARN/metabolismo , Nanopartículas/química , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
11.
Xenobiotica ; : 1-23, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607350

RESUMEN

RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterize the ADME properties of an AOC during development to optimize distribution to target tissues, to minimize the impact of biotransformation on exposure, and to characterize the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterization of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterization of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.

12.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000202

RESUMEN

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Asunto(s)
Cisplatino , Células Ciliadas Auditivas , Microburbujas , Muramidasa , NADPH Oxidasa 4 , Ototoxicidad , Especies Reactivas de Oxígeno , Cisplatino/farmacología , Animales , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Ratones , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ototoxicidad/genética , Muramidasa/genética , ARN Interferente Pequeño/genética , Ondas Ultrasónicas , Técnicas de Silenciamiento del Gen , Línea Celular
13.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203499

RESUMEN

Small interfering RNA (siRNA) represents a novel, fascinating therapeutic strategy that allows for selective reduction in the production of a specific protein through RNA interference. In the cardiovascular (CV) field, several siRNAs have been developed in the last decade. Inclisiran has been shown to significantly reduce low-density lipoprotein cholesterol (LDL-C) circulating levels with a reassuring safety profile, also in older patients, by hampering proprotein convertase subtilisin/kexin type 9 (PCSK9) production. Olpasiran, directed against apolipoprotein(a) mRNA, prevents the assembly of lipoprotein(a) [Lp(a)] particles, a lipoprotein linked to an increased risk of ischemic CV disease and heart valve damage. Patisiran, binding transthyretin (TTR) mRNA, has demonstrated an ability to improve heart failure and polyneuropathy in patients with TTR amyloidosis, even in older patients with wild-type form. Zilebesiran, designed to reduce angiotensinogen secretion, significantly decreases systolic and diastolic blood pressure (BP). Thanks to their effectiveness, safety, and tolerability profile, and with a very low number of administrations in a year, thus overcoming adherence issues, these novel drugs are the leaders of a new era in molecular therapies for CV diseases.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Hipertensión , Humanos , Anciano , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Proproteína Convertasa 9/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Hipertensión/genética , Hipertensión/terapia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , ARN Mensajero
14.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203317

RESUMEN

In recent years, nucleic acids have emerged as powerful biomaterials, revolutionizing the field of biomedicine. This review explores the multifaceted applications of nucleic acids, focusing on their pivotal role in various biomedical applications. Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), possess unique properties such as molecular recognition ability, programmability, and ease of synthesis, making them versatile tools in biosensing and for gene regulation, drug delivery, and targeted therapy. Their compatibility with chemical modifications enhances their binding affinity and resistance to degradation, elevating their effectiveness in targeted applications. Additionally, nucleic acids have found utility as self-assembling building blocks, leading to the creation of nanostructures whose high order underpins their enhanced biological stability and affects the cellular uptake efficiency. Furthermore, this review delves into the significant role of oligonucleotides (ODNs) as indispensable tools for biological studies and biomarker discovery. ODNs, short sequences of nucleic acids, have been instrumental in unraveling complex biological mechanisms. They serve as probes for studying gene expression, protein interactions, and cellular pathways, providing invaluable insights into fundamental biological processes. By examining the synergistic interplay between nucleic acids as powerful biomaterials and ODNs as indispensable tools for biological studies and biomarkers, this review highlights the transformative impact of these molecules on biomedical research. Their versatile applications not only deepen our understanding of biological systems but also are the driving force for innovation in diagnostics and therapeutics, ultimately advancing the field of biomedicine.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/uso terapéutico , Oligonucleótidos/uso terapéutico , ARN , Materiales Biocompatibles/uso terapéutico , Transporte Biológico
15.
ACS Synth Biol ; 13(6): 1906-1915, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38733599

RESUMEN

Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation. Herein, we show that with the use of a new tRNA fused pre-miRNA carrier, we can produce various forms of BioRNA/siRNA agents within living host cells. We report a high-level overexpression of nine target BioRNA/siRNA molecules at 100% success rate, yielding 3-10 mg of BioRNA/siRNA per 0.25 L of bacterial culture with high purity (>98%) and low endotoxin (<5 EU/µg RNA). Furthermore, we demonstrate that three representative BioRNA/siRNAs against GFP, BCL2, and PD-L1 are biologically active and can specifically and efficiently silence their respective targets with the potential to effectively produce downstream antiproliferation effects by PD-L1-siRNA. With these promising results, we aim to advance the field of synthetic biology by offering a novel platform to bioengineer functional siRNA agents for research and drug development.


Asunto(s)
ARN Interferente Pequeño , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Humanos , Biología Sintética/métodos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
16.
Expert Opin Pharmacother ; 25(4): 349-358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549399

RESUMEN

INTRODUCTION: The burden of atherosclerotic cardiovascular disease (ASCVD) persists globally, demanding innovative therapeutic strategies. This manuscript provides an expert opinion on the significance of managing low-density lipoprotein cholesterol in ASCVD prevention and introduces inclisiran, a novel small interfering RNA targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). AREAS COVERED: This work delves into the intricate mechanism of inclisiran, highlighting its unique approach of hepatic intracellular PCSK9 inhibition, its precision and low off-target effects risk. Pharmacodynamic and pharmacokinetic distinctions from PCSK9 monoclonal antibodies are explored, underlining inclisiran's efficiency, extended duration, and clearance. Clinical trials, including pivotal phase-III placebo-controlled studies (ORION-9, -10, -11), the open-label ORION-3 and pooled safety analysis of these trails including the open-label phase of ORION-8, as well as real-word data are discussed to provide a comprehensive evaluation of inclisiran's efficacy and safety. EXPERT OPINION: Inclisiran stands as a first-in-class breakthrough in lipid-lowering therapies, showing potential in alleviating the global burden of ASCVD and is supported by multiple global regulatory approvals. To optimize inclisiran's utilization and comprehend its long-term effects, future directions include pediatric studies, cardiovascular outcome trials, and extended-duration investigations. Overall, inclisiran emerges as a precise and effective therapeutic option, offering significant promise for preserving cardiovascular health.


Asunto(s)
LDL-Colesterol , Inhibidores de PCSK9 , ARN Interferente Pequeño , Humanos , LDL-Colesterol/sangre , ARN Interferente Pequeño/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Animales , Proproteína Convertasa 9/metabolismo , Anticolesterolemiantes/uso terapéutico , Anticolesterolemiantes/efectos adversos , Anticolesterolemiantes/farmacología , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/tratamiento farmacológico , Hipercolesterolemia/tratamiento farmacológico
17.
Int J Pharm ; 654: 123994, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38484859

RESUMEN

Small interfering RNA (siRNA) holds great potential to treat many difficult-to-treat diseases, but its delivery remains the central challenge. This study aimed at investigating the suitability of polymer-lipid hybrid nanomedicines (HNMeds) as novel siRNA delivery platforms for locoregional therapy of glioblastoma. Two HNMed formulations were developed from poly(lactic-co-glycolic acid) polymer and a cationic lipid: 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol). After characterization of the HNMeds, a model siRNA was complexed onto their surface to form HNMed/siRNA complexes. The physicochemical properties and siRNA binding ability of complexes were assessed over a range of nitrogen-to-phosphate (N/P) ratios to optimize the formulations. At the optimal N/P ratio of 10, complexes effectively bound siRNA and improved its protection from enzymatic degradation. Using the NIH3T3 mouse fibroblast cell line, DOTAP-based HNMeds were shown to possess higher cytocompatibility in vitro over the DC-Chol-based ones. As proof-of-concept, uptake and bioefficacy of formulations were also assessed in vitro on U87MG human glioblastoma cell line expressing luciferase gene. Complexes were able to deliver anti-luciferase siRNA and induce a remarkable suppression of gene expression. Noteworthy, the effect of DOTAP-based formulation was not only about three-times higher than DC-Chol-based one, but also comparable to lipofectamine model transfection reagent. These findings set the basis to exploit this nanosystem for silencing relevant GB-related genes in further in vitro and in vivo studies.


Asunto(s)
Ácidos Grasos Monoinsaturados , Glioblastoma , Liposomas , Compuestos de Amonio Cuaternario , Ratones , Animales , Humanos , Liposomas/química , Polímeros/química , ARN Interferente Pequeño , Glioblastoma/genética , Glioblastoma/terapia , Células 3T3 NIH , Nanomedicina , Lípidos/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-38693628

RESUMEN

The therapeutic potential of small interfering RNA (siRNA) is monumental, offering a pathway to silence disease-causing genes with precision. However, the delivery of siRNA to target cells in-vivo remains a formidable challenge, owing to degradation by nucleases, poor cellular uptake and immunogenicity. This overview examines recent advancements in the design and application of nucleic acid-based integrated macromolecular complexes for the efficient delivery of siRNA. We dissect the innovative delivery vectors developed in recent years, including lipid-based nanoparticles, polymeric carriers, dendrimer complexes and hybrid systems that incorporate stimuli-responsive elements for targeted and controlled release. Advancements in bioconjugation techniques, active targeting strategies and nanotechnology-enabled delivery platforms are evaluated for their contribution to enhancing siRNA delivery. It also addresses the complex interplay between delivery system design and biological barriers, highlighting the dynamic progress and remaining hurdles in translating siRNA therapies from bench to bedside. By offering a comprehensive overview of current strategies and emerging technologies, we underscore the future directions and potential impact of siRNA delivery systems in personalized medicine.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38616741

RESUMEN

BACKGROUND: Breast cancer remains a leading cause of cancer-related deaths among women, primarily attributed to the formidable challenge of multidrug resistance, often driven by the overexpression of the ABCB1 gene. OBJECTIVE: This study aimed to assess the synergistic effects of siRNA, doxorubicin, and vinorelbine on ABCB1 gene expression and cell viability in doxorubicin-resistant MCF-7/ADR breast cancer cells, with siRNA targeting ABCB1 to reduce its expression and doxorubicin/ vinorelbine to eradicate cancer cells. METHODS: Our methodology involved culturing MCF-7 and MCF-7/ADR cells in standard cell culture conditions. The synthesized siRNA sequences transfected cells with siRNA at final concentrations of 10, 20, and 30 nM and assessed cell viability using the MTT assay was performed. Real-time PCR was employed to quantify ABCB1 mRNA expression levels. RESULTS: Results indicated that MCF-7/ADR cells exhibited substantial resistance to vinorelbine and doxorubicin compared to MCF-7 cells, displaying resistance at 12.50 µM and 25.00 µM for vinorelbine and 6.25 µM and 25.00 µM for doxorubicin. Remarkably, siRNA treatment effectively reversed drug resistance in MCF-7/ADR cells across all concentrations of vinorelbine and doxorubicin tested. When combined, siRNA, doxorubicin, and vinorelbine yielded a significantly greater reduction in cell viability compared to individual drug treatments, particularly at a 20 µM siRNA concentration. This combination therapy also significantly suppressed ABCB1 gene expression by a factor of 41.48 in MCF-7 cells relative to MCF-7/ADR cells. CONCLUSION: these findings suggest that combining siRNA, doxorubicin, and vinorelbine holds promise as a therapeutic strategy to overcome ABCB1-mediated multidrug resistance in breast cancer. Further investigations and clinical trials are warranted to evaluate its clinical efficacy rigorously.

20.
Curr Mol Med ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38918983

RESUMEN

Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA