Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 81(23): 4826-4842.e8, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34626567

RESUMEN

In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.


Asunto(s)
Proteínas Argonautas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Separación Celular , Drosophila melanogaster , Femenino , Citometría de Flujo , Expresión Génica , Silenciador del Gen , Técnicas Genéticas , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Procesamiento Proteico-Postraduccional , ARN Bicatenario , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(43): e2213373119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256822

RESUMEN

The high level of reactive oxygen species (ROS) in the rheumatoid arthritis (RA) microenvironment (RAM) and its persistent inflammatory nature can promote damage to joints, bones, and the synovium. Targeting strategies that integrate effective RAM regulation with imaging-based monitoring could lead to improvements in the diagnosis and treatment of RA. Here, we report the combined use of small interfering RNAs (siRNAsT/I) and Prussian blue nanoparticles (PBNPs) to silence the expression of proinflammatory cytokines TNF-α/IL-6 and scavenge the ROS associated with RAM. To enhance the in vitro and in vivo biological stability, biocompatibility, and targeting capability of the siRNAsT/I and PBNPs, macrophage membrane vesicles were used to prepare biomimetic nanoparticles, M@P-siRNAsT/I. The resulting constructs were found to suppress tumor necrosis factor-α/interleukin-6 expression and overcome the hypoxic nature of RAM, thus alleviating RA-induced joint damage in a mouse model. The M@P-siRNAsT/I of this study could be monitored via near-infrared photoacoustic (PA) imaging. Moreover, multispectral PA imaging without the need for labeling permitted the real-time evaluation of M@P-siRNAsT/I as a putative RA treatment. Clinical microcomputed tomography and histological analysis confirmed the effectiveness of the treatment. We thus suggest that macrophage-biomimetic M@P-siRNAsT/I and their analogs assisted by PA imaging could provide a new strategy for RA diagnosis, treatment, and monitoring.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Microtomografía por Rayos X , Artritis Reumatoide/metabolismo , Citocinas/metabolismo , ARN Interferente Pequeño/uso terapéutico
3.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602389

RESUMEN

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Asunto(s)
Hemípteros , Orthobunyavirus , Virus ARN , Animales , Femenino , Filogenia , Insectos , Virus ARN/genética
4.
Biochem Biophys Res Commun ; 729: 150372, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38981400

RESUMEN

The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.

5.
Plant Cell Environ ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798197

RESUMEN

The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.

6.
Exp Eye Res ; 242: 109880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552713

RESUMEN

Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula. The formation of macular neovascularization (MNV) and subretinal fibrosis of AMD is the most classic cause of the loss of vision in older adults worldwide. While the underlying causes of MNV and subretinal fibrosis remain elusive, the common feature of many common retinal diseases is changes the proportions of protein deposition in extracellular matrix (ECM) when compared to normal tissue. In ECM, fibronectin (FN) is a crucial component and plays a pivotal part not only in fibrotic diseases but also in the process of angiogenesis. The study aims to understand the role of ligand FN and its common integrin receptor α5ß1 on MNV, and to understand the molecular mechanism involved. To study this, the laser-induced MNV mouse model and the rhesus macaque choroid-retinal endothelial cell line (RF/6A) chemical hypoxia mode were established, and the FN-α5ß1 expression levels were detected by immunohistochemistry (IHC) and quantitative real-time PCR analysis (qRT-PCR). Fibronectin expression was silenced using small interfering RNA (siRNA) targeting FN. The tube formation and vitro scratch assays were used to assess the ability to form blood vessels and cell migration. To measure the formation of MNV, immunofluorescence, and Western blot assays were used. These results revealed that the expressions of FN and integrin α5ß1 were distinctly increased in the laser-induced MNV mouse model and in the RF/6A cytochemically induced hypoxia model, and the expression tendency was identical. After the use of FN siRNA, the tube formation and migration abilities of the RF/6A cells were lower, the ability of endothelial cells to proliferate was confined and the scope of damage caused by the laser in animal models was significantly cut down. In addition, FN gene knockdown dramatically inhibited the expression of Wnt/ß-catenin signal. The interaction of FN with the integrin receptor α5ß1 in the constructed model, which may act through the Wnt/ß-catenin signaling pathway, was confirmed in this study. In conclusion, FN may be a potential new molecular target for the prevention and treatment of subretinal fibrosis and MNV.


Asunto(s)
Modelos Animales de Enfermedad , Fibronectinas , Integrina alfa5beta1 , Ratones Endogámicos C57BL , Vía de Señalización Wnt , Animales , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Integrina alfa5beta1/genética , Ratones , Vía de Señalización Wnt/fisiología , Movimiento Celular/fisiología , Western Blotting , Macaca mulatta , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , beta Catenina/metabolismo , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , Células Cultivadas
7.
Curr Atheroscler Rep ; 26(4): 111-118, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311667

RESUMEN

PURPOSE OF REVIEW: Lipoprotein(a) is an important causal risk factor for cardiovascular disease but currently no available medication effectively reduces lipoprotein(a). This review discusses recent findings regarding lipoprotein(a) as a causal risk factor and therapeutic target in cardiovascular disease, it reviews current clinical recommendations, and summarizes new lipoprotein(a) lowering drugs. RECENT FINDINGS: Epidemiological and genetic studies have established lipoprotein(a) as a causal risk factor for cardiovascular disease and mortality. Guidelines worldwide now recommend lipoprotein(a) to be measured once in a lifetime, to offer patients with high lipoprotein(a) lifestyle advise and initiate other cardiovascular medications. Clinical trials including antisense oligonucleotides, small interfering RNAs, and an oral lipoprotein(a) inhibitor have shown great effect on lowering lipoprotein(a) with reductions up to 106%, without any major adverse effects. Recent clinical phase 1 and 2 trials show encouraging results and ongoing phase 3 trials will hopefully result in the introduction of specific lipoprotein(a) lowering drugs to lower the risk of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Factores de Riesgo de Enfermedad Cardiaca , Lipoproteína(a)/efectos de los fármacos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , Factores de Riesgo
8.
Mol Biol Rep ; 51(1): 737, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874790

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Terapia Genética/métodos , Animales , Resistencia a Antineoplásicos/genética
9.
Macromol Rapid Commun ; : e2400129, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778746

RESUMEN

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.

10.
Biol Pharm Bull ; 47(2): 469-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38383000

RESUMEN

Polyethylene glycol (PEG)-modified (PEGylated) cationic liposomes are frequently used as delivery vehicles for small interfering RNA (siRNA)-based drugs because of their ability to encapsulate/complex with siRNA and prolong the circulation half-life in vivo. Nevertheless, we have reported that subsequent intravenous (IV) injections of siRNA complexed with PEGylated cationic liposomes (PLpx) induces the production of anti-PEG immunoglobulin M (IgM), which accelerates the blood clearance of subsequent doses of PLpx and other PEGylated products. In this study, it is interesting that splenectomy (removal of spleen) did not prevent anti-PEG IgM induction by IV injection of PLpx. This indicates that B cells other than the splenic version are involved in anti-PEG IgM production under these conditions. In vitro and in vivo studies have shown that peritoneal cells also secrete anti-PEG IgM in response to the administration of PLpx. Interleukin-6 (IL-6) is a glycoprotein that is secreted by peritoneal immune cells and has been detected in response to the in vivo administration of PLpx. These observations indicate that IV injection of PLpx stimulates the proliferation/differentiation of peritoneal PEG-specific B cells into plasma cells via IL-6 induction, which results in the production of anti-PEG IgM from the peritoneal cavity of mice. Our results suggest the mutual contribution of peritoneal B cells as a potent anti-PEG immune response against PLpx.


Asunto(s)
Liposomas , Polietilenglicoles , Ratones , Animales , ARN Interferente Pequeño , Inmunoglobulina M , Interleucina-6
11.
J Nanobiotechnology ; 22(1): 348, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898486

RESUMEN

Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.


Asunto(s)
Inmunoterapia , Neoplasias Hepáticas , ARN Interferente Pequeño , Animales , Ratones , Inmunoterapia/métodos , Humanos , Neoplasias Hepáticas/terapia , Línea Celular Tumoral , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Proteínas de Unión al ARN/metabolismo , Nanopartículas/química , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
12.
Xenobiotica ; : 1-23, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607350

RESUMEN

RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterize the ADME properties of an AOC during development to optimize distribution to target tissues, to minimize the impact of biotransformation on exposure, and to characterize the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterization of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterization of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.

13.
Nano Lett ; 23(12): 5811-5821, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289977

RESUMEN

Nuclear proteins have been regarded as attractive targets for exploiting therapeutic agents. However, those agents cannot efficiently pass through nuclear pores and it is also difficult to overcome the crowded nuclear environment to react with proteins. Herein, we propose a novel strategy acting in the cytoplasm to regulate nuclear proteins based on their signaling pathways, instead of directly entering into nuclei. A multifunctional complex PKK-TTP/hs carries human telomerase reverse transcriptase (hTERT) small interfering RNA (defined as hs) for gene silencing in the cytoplasm, which reduced the import of nuclear protein. At the same time, it could generate reactive oxygen species (ROS) under light irradiation, which raised the export of nuclear proteins by promoting proteins translocation. Through this dual-regulatory pathway, we successfully reduced nuclear protein (hTERT proteins) in vivo (42.3%). This work bypasses the challenge of directly entering into the nucleus and provides an effective strategy for regulating nuclear proteins.


Asunto(s)
Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares
14.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000202

RESUMEN

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Asunto(s)
Cisplatino , Células Ciliadas Auditivas , Microburbujas , Muramidasa , NADPH Oxidasa 4 , Ototoxicidad , Especies Reactivas de Oxígeno , Cisplatino/farmacología , Animales , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Ratones , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ototoxicidad/genética , Muramidasa/genética , ARN Interferente Pequeño/genética , Ondas Ultrasónicas , Técnicas de Silenciamiento del Gen , Línea Celular
15.
Plant J ; 109(5): 1199-1212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34882879

RESUMEN

In plants, small interfering RNAs (siRNAs) are a quintessential class of RNA interference (RNAi)-inducing molecules produced by the endonucleolytic cleavage of double-stranded RNAs (dsRNAs). In order to ensure robust RNAi, siRNAs are amplified through a positive feedback mechanism called transitivity. Transitivity relies on RNA-DIRECTED RNA POLYMERASE 6 (RDR6)-mediated dsRNA synthesis using siRNA-targeted RNA. The newly synthesized dsRNA is subsequently cleaved into secondary siRNAs by DICER-LIKE (DCL) endonucleases. Just like primary siRNAs, secondary siRNAs are also loaded into ARGONAUTE proteins (AGOs) to form an RNA-induced silencing complex reinforcing the cleavage of the target RNA. Although the molecular players underlying transitivity are well established, the mode of action of transitivity remains elusive. In this study, we investigated the influence of primary target sites on transgene silencing and transitivity using the green fluorescent protein (GFP)-expressing Nicotiana benthamiana 16C line, high-pressure spraying protocol, and synthetic 22-nucleotide (nt) long siRNAs. We found that the 22-nt siRNA targeting the 3' of the GFP transgene was less efficient in inducing silencing when compared with the siRNAs targeting the 5' and middle region of the GFP. Moreover, sRNA sequencing of locally silenced leaves showed that the amount but not the profile of secondary RNAs is shaped by the occupancy of the primary siRNA triggers on the target RNA. Our findings suggest that RDR6-mediated dsRNA synthesis is not primed by primary siRNAs and that dsRNA synthesis appears to be generally initiated at the 3'-end of the target RNA.


Asunto(s)
ARN Bicatenario , Complejo Silenciador Inducido por ARN , Proteínas Fluorescentes Verdes/genética , Interferencia de ARN , ARN Bicatenario/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Complejo Silenciador Inducido por ARN/genética
16.
Small ; 19(31): e2207204, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840641

RESUMEN

Small interfering RNA (siRNA)-based gene therapy represents a promising strategy for tumor treatment. Novel gene vectors that can achieve targeted delivery of siRNA to the tumor cells without causing any side effects are urgently needed. To this end, the large amino acid mimicking carbon dots with guanidinium functionalization (LAAM GUA-CDs) are designed and synthesized by choosing arginine and dopamine hydrochloride as precursors. LAAM GUA-CDs can load siRNA through the multiple hydrogen bonds between their guanidinium groups and phosphate groups in siRNA. Meanwhile, the amino acid groups at the edges of LAAM GUA-CDs endow them the capacity to target tumors. After loading siBcl-2 as a therapeutic agent, LAAM GUA-CDs/siBcl-2 has a high tumor inhibition rate of up to 68%, which is twice more than that of commercial Lipofectamine 2000. Furthermore, LAAM GUA-CDs do not cause side effect during antitumor treatment owing to their high tumor-targeting ability, thus providing a versatile strategy for tumor-targeted siRNA delivery and cancer therapy.


Asunto(s)
Acetato de Metadil , Neoplasias , Humanos , ARN Interferente Pequeño , Guanidina , Aminoácidos , Carbono/química , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Terapia Genética
17.
Br Med Bull ; 148(1): 58-69, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37675799

RESUMEN

BACKGROUND: Osteoporosis results in reduced bone mass and consequent bone fragility. Small interfering RNAs (siRNAs) can be used for therapeutic purposes, as molecular targets or as useful markers to test new therapies. SOURCES OF DATA: A systematic search of different databases to May 2023 was performed to define the role of siRNAs in osteoporosis therapy. Fourteen suitable studies were identified. AREAS OF AGREEMENT: SiRNAs may be useful in studying metabolic processes in osteoporosis and identify possible therapeutic targets for novel drug therapies. AREAS OF CONTROVERSY: The metabolic processes of osteoporosis are regulated by many genes and cytokines that can be targeted by siRNAs. However, it is not easy to predict whether the in vitro responses of the studied siRNAs and drugs are applicable in vivo. GROWING POINTS: Metabolic processes can be affected by the effect of gene dysregulation mediated by siRNAs on various growth factors. AREAS TIMELY FOR DEVELOPING RESEARCH: Despite the predictability of pharmacological response of siRNA in vitro, similar responses cannot be expected in vivo.


Asunto(s)
Osteoporosis , Humanos , Osteoporosis/terapia , Osteoporosis/tratamiento farmacológico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
18.
Tumour Biol ; 45(1): 73-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694331

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein (LDL) receptor and fatty acid translocase CD36, inducing lysosomal degradation of these two receptors in the liver cells. Both monoclonal antibody (mAb) and small-interfering RNA (siRNA) targeting PCSK9 have been designed for treatment of familial hypercholesterolemia recently, with elevating LDL receptors on the liver cell surface and increasing LDL uptake as the main beneficial mechanism. However, given that the binding domains of PCSK9 for LDL receptor and CD36 are different, and PCSK9 mAb only attacks the domain for LDL receptor, CD36 expression remains partially controlled under PCSK9 mAb treatment. In contrast, PCSK9 siRNA brings on complete loss of PCSK9, resulting in overexpression of CD36. Based on the fact that CD36 is a key factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and subsequent hepatocellular carcinoma (HCC), the risk of developing NAFLD and HCC on long-term use of PCSK9 siRNA is thus raised as a hypothesis. Additionally, because CD36 is also involved in the promotion of malignant diseases other than HCC, such as acute myeloid leukemia, gastric cancer, breast cancer, and colorectal cancer, the speculative danger of flourishing these malignancies by PCSK9 siRNA is discussed as well.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Regulación hacia Arriba , ARN Interferente Pequeño/genética , Carcinoma Hepatocelular/genética , Proproteína Convertasa 9/genética , Neoplasias Hepáticas/genética , Receptores de LDL , Anticuerpos Monoclonales , Subtilisinas
19.
Exp Eye Res ; 231: 109474, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37080383

RESUMEN

Age-related macular degeneration (AMD) is a leading blinding disease worldwide, and macular neovascularization (MNV) is a common complication encountered in the advanced stages of AMD. While the underlying causes of MNV remain elusive, aberrant multiplication of choroidal endothelial cells (CECs) and increased vascular endothelial growth factor (VEGF) are thought to play significant roles in the occurrence and development of MNV. Allograft inflammatory factor-1(AIF-1) is a crucial regulatory factor of vascular tubular structure formation and growth, involving the proliferation and migration of vascular endothelial cells and various tumor cells. This study aimed to understand how AIF-1 effects the proliferation of CECs and the subsequent progression of MNV. To study this, a mouse MNV model was established through laser injury, and the AIF-1 expression levels were then measured using western blot and immunohistochemistry. AIF-1 siRNA was intravitreally injected to silence AIF-1 gene expression. Western blot and choroidal flat mount were performed to measure the progression of MNV and proliferation of the CECs. These results showed that the protein expression of AIF-1 was significantly elevated in the laser-induced mouse MNV model, and the expression trend was consistent with VEGF. The protein level of AIF-1 was significantly decreased after the intravitreal injection of AIF-1 siRNA, the damage range of laser lesions was significantly reduced, and the proliferation of endothelial cells was inhibited. Knockdown of the AIF-1 gene significantly inhibited the expression of mitogen-activated protein kinase p44/42 in MNV lesions. In summary, this research demonstrates that AIF-1 promoted MNV progression by promoting the proliferation of CECs and that silencing AIF-1 significantly ameliorates MNV progression in mouse models, which may act through the p44/42 MAPK signaling pathway. AIF-1 could be a new potential molecular target for MNV.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Neovascularización Coroidal/metabolismo , Transducción de Señal/fisiología , ARN Interferente Pequeño/genética , Degeneración Macular/metabolismo , Proliferación Celular , Rayos Láser
20.
J Biomed Sci ; 30(1): 88, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845731

RESUMEN

RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.


Asunto(s)
COVID-19 , Virus , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , ARN Interferente Pequeño/metabolismo , Pandemias , COVID-19/genética , COVID-19/terapia , Interferencia de ARN , Virus/genética , Virus/metabolismo , Antivirales/uso terapéutico , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA