Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17036, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273524

RESUMEN

Mountain agroecosystems in Latin America provide multiple ecosystem functions (EFs) and products from global to local scales, particularly for the rural communities who depend on them. Agroforestry has been proposed as a climate-smart farming strategy throughout much of the region to help conserve biodiversity and enhance multiple EFs, especially in mountainous regions. However, large-scale synthesis on the potential of agroforestry across Latin America is lacking. To understand the potential impacts of agroforestry at the continental level, we conducted a meta-analysis examining the effects of agroforestry on biological activity and diversity (BIAD) and multiple EFs across mountain agroecosystems of Latin America. A total of 78 studies were selected based on a formalized literature search in the Web of Science. We analysed differences between (i) silvoarable systems versus cropland, (ii) silvopastoral systems versus pastureland, and (iii) agroforestry versus forest systems, based on response ratios. Response ratios were further used to understand how climate type, precipitation and soil properties (texture) influence key EFs (carbon sequestration, nutrient provision, erosion control, yield production) and BIAD in agroforestry systems. Results revealed that BIAD and EFs related to carbon sequestration and nutrient provisioning were generally higher in agroforestry systems (silvopastoral and silvoarable) compared to croplands and pasturelands without trees. However, the impacts of agroforestry systems on crop yields varied depending on the system considered (i.e., coffee vs. cereals), while forest systems generally provided greater levels of BIAD and EFs than agroforestry systems. Further analysis demonstrated that the impacts of agroforestry systems on BIAD and EFs depend greatly on climate type, soil, and precipitation. For example, silvoarable systems appear to generate the greatest benefits in arid or tropical climates, on sandier soils, and under lower precipitation regimes. Overall, our findings highlight the widespread potential of agroforestry systems to BIAD and multiple EFs across montane regions of Latin America.


Asunto(s)
Ecosistema , Suelo , América Latina , Agricultura/métodos , Biodiversidad
2.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931642

RESUMEN

This study presents the Fast Fruit 3D Detector (FF3D), a novel framework that contains a 3D neural network for fruit detection and an anisotropic Gaussian-based next-best view estimator. The proposed one-stage 3D detector, which utilizes an end-to-end 3D detection network, shows superior accuracy and robustness compared to traditional 2D methods. The core of the FF3D is a 3D object detection network based on a 3D convolutional neural network (3D CNN) followed by an anisotropic Gaussian-based next-best view estimation module. The innovative architecture combines point cloud feature extraction and object detection tasks, achieving accurate real-time fruit localization. The model is trained on a large-scale 3D fruit dataset and contains data collected from an apple orchard. Additionally, the proposed next-best view estimator improves accuracy and lowers the collision risk for grasping. Thorough assessments on the test set and in a simulated environment validate the efficacy of our FF3D. The experimental results show an AP of 76.3%, an AR of 92.3%, and an average Euclidean distance error of less than 6.2 mm, highlighting the framework's potential to overcome challenges in orchard environments.

3.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257588

RESUMEN

Industry 4.0 is positioned at the junction of different disciplines, aiming to re-engineer processes and improve effectiveness and efficiency. It is taking over many industries whose traditional practices are being disrupted by advances in technology and inter-connectivity. In this context, enhanced agriculture systems incorporate new components that are capable of generating better decision making (humidity/temperature/soil sensors, drones for plague detection, smart irrigation, etc.) and also include novel processes for crop control (reproducible environmental conditions, proven strategies for water stress, etc.). At the same time, advances in model-driven development (MDD) simplify software development by introducing domain-specific abstractions of the code that makes application development feasible for domain experts who cannot code. XMDD (eXtreme MDD) makes this way to assemble software even more user-friendly and enables application domain experts who are not programmers to create complex solutions in a more straightforward way. Key to this approach is the introduction of high-level representations of domain-specific functionalities (called SIBs, service-independent building blocks) that encapsulate the programming code and their organisation in reusable libraries, and they are made available in the application development environment. This way, new domain-specific abstractions of the code become easily comprehensible and composable by domain experts. In this paper, we apply these concepts to a smart agriculture solution, producing a proof of concept for the new methodology in this application domain to be used as a portable demonstrator for MDD in IoT and agriculture in the Confirm Research Centre for Smart Manufacturing. Together with model-driven development tools, we leverage here the capabilities of the Nordic Thingy:53 as a multi-protocol IoT prototyping platform. It is an advanced sensing device that handles the data collection and distribution for decision making in the context of the agricultural system and supports edge computing. We demonstrate the importance of high-level abstraction when adopting a complex software development cycle within a multilayered heterogeneous IT ecosystem.

4.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894052

RESUMEN

Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.


Asunto(s)
Técnicas Biosensibles , Plantas , Plantas/metabolismo , Técnicas Biosensibles/métodos , Estrés Fisiológico , Metales Pesados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Fenómenos Fisiológicos de las Plantas , Plaguicidas , Transducción de Señal
5.
Sensors (Basel) ; 24(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793846

RESUMEN

The agricultural sector is amidst an industrial revolution driven by the integration of sensing, communication, and artificial intelligence (AI). Within this context, the internet of things (IoT) takes center stage, particularly in facilitating remote livestock monitoring. Challenges persist, particularly in effective field communication, adequate coverage, and long-range data transmission. This study focuses on employing LoRa communication for livestock monitoring in mountainous pastures in the north-western Alps in Italy. The empirical assessment tackles the complexity of predicting LoRa path loss attributed to diverse land-cover types, highlighting the subtle difficulty of gateway deployment to ensure reliable coverage in real-world scenarios. Moreover, the high expense of densely deploying end devices makes it difficult to fully analyze LoRa link behavior, hindering a complete understanding of networking coverage in mountainous environments. This study aims to elucidate the stability of LoRa link performance in spatial dimensions and ascertain the extent of reliable communication coverage achievable by gateways in mountainous environments. Additionally, an innovative deep learning approach was proposed to accurately estimate path loss across challenging terrains. Remote sensing contributes to land-cover recognition, while Bidirectional Long Short-Term Memory (Bi-LSTM) enhances the path loss model's precision. Through rigorous implementation and comprehensive evaluation using collected experimental data, this deep learning approach significantly curtails estimation errors, outperforming established models. Our results demonstrate that our prediction model outperforms established models with a reduction in estimation error to less than 5 dB, marking a 2X improvement over state-of-the-art models. Overall, this study signifies a substantial advancement in IoT-driven livestock monitoring, presenting robust communication and precise path loss prediction in rugged landscapes.

6.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38339466

RESUMEN

Ruby mangoes are a cultivar with a thick skin, firm texture, red color, no splinters, and thin seeds that is grown in eastern Thailand for export. Implementing a low-power wide-area network (LPWAN) for smart agriculture applications can help increase the crop quality or yield. In this study, empirical path loss models were developed to help plan a LPWAN, operating at 433 MHz, of a Ruby mango plantation in Sakaeo, eastern Thailand. The proposed models take advantage of the symmetric pattern of Ruby mango trees cultivated in the plantation by using tree attenuation factors (TAFs) to consider the path loss at the trunk and canopy levels. A field experiment was performed to collect received signal strength indicator (RSSI) measurements and compare the performance of the proposed models with those of conventional models. The proposed models demonstrated a high prediction accuracy for both line-of-sight and non-line-of-sight routes and performed better than the other models.

7.
J Environ Manage ; 350: 119654, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016232

RESUMEN

China has implemented policies like Leading areas for Agricultural Green Development (LAGD) to mitigate livestock and poultry farming pollution while promoting industry growth. However, it remains uncertain whether LAGDs have successfully balanced emission reduction with stable development. This study examines 165 LAGDs to analyze changes in emissions, assess the decoupling of emission reduction from output value, and identify influencing factors. Findings reveal that emissions from livestock and poultry in LAGDs initially increased and then decreased between 2010 and 2019. Cattle were responsible for over 40% of fecal emissions, and pigs for more than 20%. Additionally, pigs contributed to over 61% of urine emissions. From 2010 to 2014, increases in chemical oxygen demand were mainly due to pigs and cattle. Total nitrogen levels were significantly impacted by cattle, while pigs were affected by total phosphorus. From 2014 to 2019, reductions in emissions were largely attributed to a decrease in pig-related pollutants. The decoupling status shifted from strong to weak and then back to strong between 2014 and 2019. Production efficiency played a crucial role in reducing emissions, while changes in industrial structure moved from supporting to hindering this reduction. Economic development was a primary factor in driving these changes. Standard emissions in Chinese regions showed a rising and then declining trend from 2010 to 2019. The Northeast and Northwest regions of China demonstrated emission trends that were in sync with the growth in rural income. This study offers insights into the successes and challenges of LAGDs in achieving a balance between reduced emissions and development, using quantitative analysis. The findings are instrumental in informing policies for a sustainable livestock and poultry industry. Recommendations include evaluating coordinated approaches to pollution reduction and industrial growth, setting decoupling goals, designing policies based on influential factors, conducting regional assessments of livestock and poultry demand, and implementing region-specific strategies.


Asunto(s)
Ganado , Aves de Corral , Animales , Bovinos , Agricultura , China , Análisis de la Demanda Biológica de Oxígeno , Desarrollo Económico , Dióxido de Carbono
8.
J Environ Manage ; 366: 121689, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991340

RESUMEN

In North Bihar (NB), the conventional rice-wheat cropping system has led to soil, water, and environmental degradation, alongside low profitability, threatening sustainability. To address these concerns, a thorough field research was conducted over the course of three years to assess different methods of tillage and crop establishment in a rice, wheat, and greengram cycle. The experiment involved five scenarios with different combinations of crop rotation, tillage techniques, seeding procedures, fertilizer use, and irrigation strategies. Uncertainty analysis showed no significant change in mean and variance estimation among seven scenario replications at 5% significance level. Compared to traditional farming (SN-1), managing DSR-rice (SN-5) increased profitability by 17.56%, improved energy use efficiency (EUE) by 32.16%, and reduced irrigation by 24.76% and global warming potential (GWP) by 23.46%. Similarly, substituting zero tillage wheat (ZTW) SN-5 resulted in comparable profitability gains (18.25%) and significant improvements in irrigation (10 %), EUE (+48.65%), and GWP (-20 %) compared to SN-1. Green gram ZT also showed increased profitability (17.35%), with notable improvements in EUE (+38.31%) and GWP (-12.92%) compared to SN-1. Principal component and correlation analyses revealed relationships between total energy inputs, yields, economic returns, and sustainability indices, highlighting the benefits of crop rotation and tillage practices in optimizing resource use. The study suggests that compared to conventional systems, significant improvements in productivity, profitability, energy-use efficiency, and environmental mitigation can be achieved with Crop Rotation and Tillage Operations techniques.


Asunto(s)
Agricultura , Productos Agrícolas , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , India , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Agricultura/economía , Agricultura/métodos , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Verduras/crecimiento & desarrollo , Verduras/metabolismo , Incertidumbre , Energía Renovable/economía , Riego Agrícola/economía , Riego Agrícola/métodos
9.
Environ Res ; 235: 116456, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343760

RESUMEN

The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.


Asunto(s)
Ecosistema , Fertilizantes , Humanos , Fertilizantes/análisis , Agricultura/métodos , Suelo , Plantas
10.
J Dairy Sci ; 106(8): 5474-5484, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37291037

RESUMEN

The greenhouse gas emission intensity of US milk production (i.e., greenhouse gas emissions per unit of production) has varied across time and states. However, research has not examined how farm-sector trends affect the state-level emission intensity of production. We estimated fixed effects regressions with state-level panel data from 1992 through 2017 to test how US dairy farm-sector changes influenced the greenhouse gas emission intensity of production. We found that increases in per cow milk productivity reduced the enteric greenhouse gas emission intensity of milk production, while it had no statistically significant effect on the manure greenhouse gas emission intensity of production. In contrast, increases in average farm size and the number of farms reduced the manure greenhouse gas emission intensity of milk production, while they did not affect the enteric greenhouse gas emission intensity of production.


Asunto(s)
Gases de Efecto Invernadero , Bovinos , Femenino , Animales , Gases de Efecto Invernadero/análisis , Leche/química , Efecto Invernadero , Estiércol/análisis , Industria Lechera , Metano
11.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904586

RESUMEN

Over the last few years, several studies have appeared that employ Artificial Intelligence (AI) techniques to improve sustainable development in the agricultural sector. Specifically, these intelligent techniques provide mechanisms and procedures to facilitate decision-making in the agri-food industry. One of the application areas has been the automatic detection of plant diseases. These techniques, mainly based on deep learning models, allow for analysing and classifying plants to determine possible diseases facilitating early detection and thus preventing the propagation of the disease. In this way, this paper proposes an Edge-AI device that incorporates the necessary hardware and software components for automatically detecting plant diseases from a set of images of a plant leaf. In this way, the main goal of this work is to design an autonomous device that allows the detection of possible diseases that can detect potential diseases in plants. This will be achieved by capturing multiple images of the leaves and implementing data fusion techniques to enhance the classification process and improve its robustness. Several tests have been carried out to determine that the use of this device significantly increases the robustness of the classification responses to possible plant diseases.


Asunto(s)
Agricultura , Inteligencia Artificial , Consenso , Inteligencia , Enfermedades de las Plantas
12.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005630

RESUMEN

In the future, the world is likely to face water and therefore food shortages due to reasons such as global warming, population growth, the melting of glaciers, the destruction of agricultural lands over time or their use for different purposes, and environmental pollution. Although technological developments are important for people to live a more comfortable and safer life, it is also possible to reduce and even repair the damage to nature and protect nature itself thanks to new technologies. There is a requirement to detect abnormal water usage in agriculture to avert water scarcity, and an electronic system can help achieve this objective. In this research, an experimental study was carried out to detect water leaks in the field in order to prevent water losses that can occur in agriculture, where water consumption is the highest. Therefore, in this study, low-cost embedded electronic hardware was developed to detect over-watering by means of normal and thermal camera sensors and to collect the required data, which can be installed on a mobile agricultural robot. For image processing and the diagnosis of abnormal conditions, the collected data were transferred to a personal computer server. Then, software was developed for both the low-cost embedded system and the personal computer to provide a faster detection and decision-making process. The physical and software system developed in this study was designed to provide a water leak detection process that has a minimum response time. For this purpose, mathematical and image processing algorithms were applied to obtain efficient water detection for the conversion of the thermal sensor data into an image, the image size enhancement using interpolation, the combination of normal and thermal images, and the calculation of the image area where water leakage occurs. The field experiments for this developed system were performed manually to observe the good functioning of the system.

13.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36992018

RESUMEN

Agricultural sensors are essential technologies for smart agriculture, which can transform non-electrical physical quantities such as environmental factors. The ecological elements inside and outside of plants and animals are converted into electrical signals for control system recognition, providing a basis for decision-making in smart agriculture. With the rapid development of smart agriculture in China, agricultural sensors have ushered in opportunities and challenges. Based on a literature review and data statistics, this paper analyzes the market prospects and market scale of agricultural sensors in China from four perspectives: field farming, facility farming, livestock and poultry farming and aquaculture. The study further predicts the demand for agricultural sensors in 2025 and 2035. The results reveal that China's sensor market has a good development prospect. However, the paper garnered the key challenges of China's agricultural sensor industry, including a weak technical foundation, poor enterprise research capacity, high importation of sensors and a lack of financial support. Given this, the agricultural sensor market should be comprehensively distributed in terms of policy, funding, expertise and innovative technology. In addition, this paper highlighted integrating the future development direction of China's agricultural sensor technology with new technologies and China's agricultural development needs.

14.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617147

RESUMEN

Wearable devices are widely spreading in various scenarios for monitoring different parameters related to human and recently plant health. In the context of precision agriculture, wearables have proven to be a valuable alternative to traditional measurement methods for quantitatively monitoring plant development. This study proposed a multi-sensor wearable platform for monitoring the growth of plant organs (i.e., stem and fruit) and microclimate (i.e., environmental temperature-T and relative humidity-RH). The platform consists of a custom flexible strain sensor for monitoring growth when mounted on a plant and a commercial sensing unit for monitoring T and RH values of the plant surrounding. A different shape was conferred to the strain sensor according to the plant organs to be engineered. A dumbbell shape was chosen for the stem while a ring shape for the fruit. A metrological characterization was carried out to investigate the strain sensitivity of the proposed flexible sensors and then preliminary tests were performed in both indoor and outdoor scenarios to assess the platform performance. The promising results suggest that the proposed system can be considered one of the first attempts to design wearable and portable systems tailored to the specific plant organ with the potential to be used for future applications in the coming era of digital farms and precision agriculture.


Asunto(s)
Microclima , Dispositivos Electrónicos Vestibles , Humanos , Temperatura , Monitoreo Fisiológico/métodos
15.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36904655

RESUMEN

Automated soil moisture systems are commonly used in precision agriculture. Using low-cost sensors, the spatial extension can be maximized, but the accuracy might be reduced. In this paper, we address the trade-off between cost and accuracy comparing low-cost and commercial soil moisture sensors. The analysis is based on the capacitive sensor SKU:SEN0193 tested under lab and field conditions. In addition to individual calibration, two simplified calibration techniques are proposed: universal calibration, based on all 63 sensors, and a single-point calibration using the sensor response in dry soil. During the second stage of testing, the sensors were coupled to a low-cost monitoring station and installed in the field. The sensors were capable of measuring daily and seasonal oscillations in soil moisture resulting from solar radiation and precipitation. The low-cost sensor performance was compared to commercial sensors based on five variables: (1) cost, (2) accuracy, (3) qualified labor demand, (4) sample volume, and (5) life expectancy. Commercial sensors provide single-point information with high reliability but at a high acquisition cost, while low-cost sensors can be acquired in larger numbers at a lower cost, allowing for more detailed spatial and temporal observations, but with medium accuracy. The use of SKU sensors is then indicated for short-term and limited-budget projects in which high accuracy of the collected data is not required.

16.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850843

RESUMEN

Ubiquitous sensor networks collecting real-time data have been adopted in many industrial settings. This paper describes the second stage of an end-to-end system integrating modern hardware and software tools for precise monitoring and control of soil conditions. In the proposed framework, the data are collected by the sensor network distributed in the soil of a commercial strawberry farm to infer the ultimate physicochemical characteristics of the fruit at the point of harvest around the sensor locations. Empirical and statistical models are jointly investigated in the form of neural networks and Gaussian process regression models to predict the most significant physicochemical qualities of strawberry. Color, for instance, either by itself or when combined with the soluble solids content (sweetness), can be predicted within as little as 9% and 14% of their expected range of values, respectively. This level of accuracy will ultimately enable the implementation of the next phase in controlling the soil conditions where data-driven quality and resource-use trade-offs can be realized for sustainable and high-quality strawberry production.

17.
Sensors (Basel) ; 23(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37837048

RESUMEN

Smart agricultural systems have received a great deal of interest in recent years because of their potential for improving the efficiency and productivity of farming practices. These systems gather and analyze environmental data such as temperature, soil moisture, humidity, etc., using sensor networks and Internet of Things (IoT) devices. This information can then be utilized to improve crop growth, identify plant illnesses, and minimize water usage. However, dealing with data complexity and dynamism can be difficult when using traditional processing methods. As a solution to this, we offer a novel framework that combines Machine Learning (ML) with a Reinforcement Learning (RL) algorithm to optimize traffic routing inside Software-Defined Networks (SDN) through traffic classifications. ML models such as Logistic Regression (LR), Random Forest (RF), k-nearest Neighbours (KNN), Support Vector Machines (SVM), Naive Bayes (NB), and Decision Trees (DT) are used to categorize data traffic into emergency, normal, and on-demand. The basic version of RL, i.e., the Q-learning (QL) algorithm, is utilized alongside the SDN paradigm to optimize routing based on traffic classes. It is worth mentioning that RF and DT outperform the other ML models in terms of accuracy. Our results illustrate the importance of the suggested technique in optimizing traffic routing in SDN environments. Integrating ML-based data classification with the QL method improves resource allocation, reduces latency, and improves the delivery of emergency traffic. The versatility of SDN facilitates the adaption of routing algorithms depending on real-time changes in network circumstances and traffic characteristics.

18.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37837152

RESUMEN

Plant factory is an important field of practice in smart agriculture which uses highly sophisticated equipment for precision regulation of the environment to ensure crop growth and development efficiently. Environmental factors, such as temperature and humidity, significantly impact crop production in a plant factory. Given the inherent complexities of dynamic models associated with plant factory environments, including strong coupling, strong nonlinearity and multi-disturbances, a nonlinear adaptive decoupling control approach utilizing a high-order neural network is proposed which consists of a linear decoupling controller, a nonlinear decoupling controller and a switching function. In this paper, the parameters of the controller depend on the generalized minimum variance control rate, and an adaptive algorithm is presented to deal with uncertainties in the system. In addition, a high-order neural network is utilized to estimate the unmolded nonlinear terms, consequently mitigating the impact of nonlinearity on the system. The simulation results show that the mean error and standard error of the traditional controller for temperature control are 0.3615 and 0.8425, respectively. In contrast, the proposed control strategy has made significant improvements in both indicators, with results of 0.1655 and 0.6665, respectively. For humidity control, the mean error and standard error of the traditional controller are 0.1475 and 0.441, respectively. In comparison, the proposed control strategy has greatly improved on both indicators, with results of 0.0221 and 0.1541, respectively. The above results indicate that even under complex conditions, the proposed control strategy is capable of enabling the system to quickly track set values and enhance control performance. Overall, precise temperature and humidity control in plant factories and smart agriculture can enhance production efficiency, product quality and resource utilization.

19.
Sensors (Basel) ; 23(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37896565

RESUMEN

The Internet of Things (IoT) is a transformative technology that is reshaping industries and daily life, leading us towards a connected future that is full of possibilities and innovations. In this paper, we present a robust framework for the application of Internet of Things (IoT) technology in the agricultural sector in Bangladesh. The framework encompasses the integration of IoT, data mining techniques, and cloud monitoring systems to enhance productivity, improve water management, and provide real-time crop forecasting. We conducted rigorous experimentation on the framework. We achieve an accuracy of 87.38% for the proposed model in predicting data harvest. Our findings highlight the effectiveness and transparency of the framework, underscoring the significant potential of the IoT in transforming agriculture and empowering farmers with data-driven decision-making capabilities. The proposed framework might be very impactful in real-life agriculture, especially for monsoon agriculture-based countries like Bangladesh.


Asunto(s)
Agricultura , Tecnología , Bangladesh , Agricultura/métodos
20.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514768

RESUMEN

Rice lodging causes a loss of yield and leads to lower-quality rice. In Japan, Koshihikari is the most popular rice variety, and it has been widely cultivated for many years despite its susceptibility to lodging. Reducing basal fertilizer is recommended when the available nitrogen in soil (SAN) exceeds the optimum level (80-200 mg N kg-1). However, many commercial farmers prefer to simultaneously apply one-shot basal fertilizer at transplant time. This study investigated the relationship between the rice lodging and SAN content by assessing their spatial distributions from unmanned aircraft system (UAS) images in a Koshihikari paddy field where one-shot basal fertilizer was applied. We analyzed the severity of lodging using the canopy height model and spatially clarified a heavily lodged area and a non-lodged area. For the SAN assessment, we selected green and red band pixel digital numbers from multispectral images and developed a SAN estimating equation by regression analysis. The estimated SAN values were rasterized and compiled into a 1 m mesh to create a soil fertility map. The heavily lodged area roughly coincided with the higher SAN area. A negative correlation was observed between the rice inclination angle and the estimated SAN, and rice lodging occurred even within the optimum SAN level. These results show that the amount of one-shot basal fertilizer applied to Koshihikari should be reduced when absorbable nitrogen (SAN + fertilizer nitrogen) exceeds 200 mg N kg-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA