Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2403863, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073295

RESUMEN

A bio-inspired approach to fabricate robust superhydrophobic (SHB) surfaces with anisotropic properties replicated from a leek leaf is presented. The polydimethylsiloxane (PDMS) replica surfaces exhibit anisotropic wetting, anti-icing, and light scattering properties due to microgrooves replicated from leek leaves. Superhydrophobicity is achieved by a novel modified candle soot (CS) coating that mimics leek's epicuticular wax. The resulting surfaces show a contact angle (CA) difference of ≈30° in the directions perpendicular and parallel to the grooves, which is similar to the anisotropic properties of the original leek leaf. The coated replica is durable, withstanding cyclic bending tests (up to 10 000 cycles) and mechanical sand abrasion (up to 60 g of sand). The coated replica shows low ice adhesion (10 kPa) after the first cycle; and then, increases to ≈70 kPa after ten icing-shearing cycles; while, anisotropy in ice adhesion becomes more evident with more cycles. In addition, the candle soot-coated positive replica (CS-coated PR) demonstrates a transmittance of ≈73% and a haze of ≈65% at the wavelength of 550 nm. The results show that the properties depend on the replicated surface features of the leek leaf, which means that the leek leaf appears to be a highly useful template for bioinspired surfaces.

2.
Environ Sci Technol ; 58(26): 11578-11586, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38899536

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are the primary organic carbons in soot. In addition to PAHs with even carbon numbers (PAHeven), substantial odd-carbon PAHs (PAHodd) have been widely observed in soot and ambient particles. Analyzing and understanding the photoaging of these compounds are essential for assessing their environmental effects. Here, using laser desorption ionization mass spectrometry (LDI-MS), we reveal the substantially different photoreactivity of PAHodd from PAHeven in the aging process and their MS detection through their distinct behaviors in the presence and absence of elemental carbon (EC) in soot. During direct photooxidation of organic carbon (OC) alone, the PAHeven are oxidized more rapidly than the PAHodd. However, the degradation of PAHodd becomes preponderant over PAHeven in the presence of EC during photoaging of the whole soot. All of these observations are proposed to originate from the more rapid hydrogen abstraction reaction from PAHodd in the EC-photosensitized reaction, owing to its unique structure of a single sp3-hybridized carbon site. Our findings reveal the photoreactivity and reaction mechanism of PAHodd for the first time, providing a comprehensive understanding of the oxidation of PAHs at a molecular level during soot aging and highlight the enhanced effect of EC on PAHodd ionization in LDI-MS analysis.


Asunto(s)
Carbono , Hidrocarburos Policíclicos Aromáticos , Hollín , Hidrocarburos Policíclicos Aromáticos/química , Carbono/química , Hollín/química , Procesos Fotoquímicos , Oxidación-Reducción , Fotoquímica
3.
Environ Sci Technol ; 58(24): 10558-10566, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833713

RESUMEN

Soot particles emitted from aircraft engines constitute a major anthropogenic source of pollution in the vicinity of airports and at cruising altitudes. This emission poses a significant threat to human health and may alter the global climate. Understanding the characteristics of soot particles, particularly those generated from Twin Annular Premixing Swirler (TAPS) combustors, a mainstream combustor in civil aviation engines, is crucial for aviation environmental protection. In this study, a comprehensive characterization of soot particles emitted from TAPS combustors was conducted using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The morphology and nanostructure of soot particles were examined across three distinct fuel stage ratios (FSR), at 10%, 15%, and 20%. The SEM analysis of soot particle morphology revealed that coated particles constitute over 90% of the total particle sample, with coating content increasing proportionally to the fuel stage ratio. The results obtained from HRTEM indicated that average primary particle sizes increase with the fuel stage ratio. The results of HRTEM and Raman spectroscopy suggest that the nanostructure of soot particles becomes more ordered and graphitized with an increasing fuel stage ratio, resulting in lower oxidation activity. Specifically, soot fringe length increased with the fuel stage ratio, while soot fringe tortuosity and separation distance decreased. In addition, there is a prevalent occurrence of defects in the graphitic lattice structure of soot particles, suggesting a high degree of elemental carbon disorder.


Asunto(s)
Aeronaves , Hollín , Nanoestructuras/química , Tamaño de la Partícula , Emisiones de Vehículos , Espectrometría Raman , Contaminantes Atmosféricos
4.
Environ Sci Technol ; 58(16): 6945-6953, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588448

RESUMEN

The characteristics of aviation-induced aerosol, its processing, and effects on cirrus clouds and climate are still associated with large uncertainties. Properties of aviation-induced aerosol, however, are crucially needed for the assessment of aviation's climate impacts today and in the future. We identified more than 1100 aircraft plume encounters during passenger aircraft flights of the IAGOS-CARIBIC Flying Laboratory from July 2018 to March 2020. The aerosol properties inside aircraft plumes were similar, independent of the altitude (i.e., upper troposphere, tropopause region, and lowermost stratosphere). The exhaust aerosol was found to be mostly externally mixed compared to the internally mixed background aerosol, even at a plume age of 1 to 3 h. No enhancement of accumulation mode particles (diameter >250 nm) could be detected inside the aircraft plumes. Particle number emission indices (EIs) deduced from the observations in aged plumes are in the same range as values reported from engine certifications. This finding, together with the observed external mixing state inside the plumes, indicates that the aviation exhaust aerosol almost remains in its emission state during plume expansion. It also reveals that the particle number EIs used in global models are within the range of the EIs measured in aged plumes.

5.
Environ Sci Technol ; 58(18): 8096-8108, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38627223

RESUMEN

Particulate matter, represented by soot particles, poses a significant global environmental threat, necessitating efficient control technology. Here, we innovatively designed and elaborately fabricated ordered hierarchical macroporous catalysts of Ce0.8Zr0.2O2 (OM CZO) integrated on a catalyzed diesel particulate filter (CDPF) using the self-assembly method. An oxygen-vacancy-enriched ordered macroporous Ce0.8Zr0.2O2 catalyst (VO-OM CZO) integrated CDPF was synthesized by subsequent NaBH4 reduction. The VO-OM CZO integrated CDPF exhibited a markedly enhanced soot oxidation activity compared to OM CZO and powder CZO coated CDPFs (T50: 430 vs 490 and 545 °C, respectively). The well-defined OM structure of the VO-OM CZO catalysts effectively improves the contact efficiency between soot and the catalysts. Meanwhile, oxygen vacancies trigger the formation of a large amount of highly reactive peroxide species (O22-) from molecular oxygen (O2) through electron abstraction from the three adjacent Ce3+ (3Ce3+ + Vö + O2 → 3Ce4+ + O22-), contributing to the efficient soot oxidation. This work demonstrates the fabrication of the ordered macroporous CZO integrated CDPF and reveals the importance of structure and surface engineering in soot oxidation, which sheds light on the design of highly efficient PM capture and removal devices.


Asunto(s)
Oxidación-Reducción , Catálisis , Peróxidos/química , Hollín/química , Filtración , Material Particulado/química , Emisiones de Vehículos
6.
Cryobiology ; 115: 104863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38395186

RESUMEN

The restoration of initial functionality of human spermatozoa subjected to cryopreservation is challenging, because the deleterious intracellular icing and the occurrence of osmotic shocks due to prolonged exposure to increased concentrations of intracellular solutes are oppositely dependent on the cooling rate. This longstanding problem could be overcome if using superhydrophobic soot coatings delaying the heat transfer rate, reducing the ice formation probability and triggering balanced and timely dehydration of the cells, but the effect of their surface profile and sperm volume on the success rate of slow freezing is unclear. Here, we show for the first time that the two-factor freezing injury is entirely avoidable by tailoring the solid-to-gas voids (pores) fraction in the soot, leading to increased nucleation free energy barrier, presumable incipiency of ice crystals with controllable shape and size and hence, fully (100 %) recovered post-thaw sperm motility. It is demonstrated that the reason for such a unique scientific result is the selection of soot coatings with appropriate morphochemical features, hypothetically (not directly proven yet) inducing equilibrium among the solution composition and ice crystals formation, retarding the undesirable compression of liquid-filled "slush ice" channels surrounding the cytoplasm and impeding the ice recrystallization. The novel insights introduced in this article open endless horizon for customizing and revolutionizing the technical protocols in cryobiology.


Asunto(s)
Criopreservación , Congelación , Interacciones Hidrofóbicas e Hidrofílicas , Preservación de Semen , Motilidad Espermática , Espermatozoides , Masculino , Humanos , Criopreservación/métodos , Preservación de Semen/métodos , Espermatozoides/efectos de los fármacos , Espermatozoides/citología , Motilidad Espermática/efectos de los fármacos , Hielo , Propiedades de Superficie , Carbono/química , Crioprotectores/farmacología , Crioprotectores/química , Semen/efectos de los fármacos , Semen/química
7.
J Aerosol Sci ; 178: 1-20, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38751612

RESUMEN

The U. S. Environmental Protection Agency in collaboration with the U. S. Air Force Arnold Engineering Development Complex conducted the VAriable Response In Aircraft nvPM Testing (VARIAnT) 3 and 4 test campaigns to compare nonvolatile particulate matter (nvPM) emissions measurements from a variety of diffusion flame combustion aerosol sources (DFCASs), including a Cummins diesel engine, a diesel powered generator, two gas turbine start carts, a J85-GE-5 turbojet engine burning multiple fuels, and a Mini-CAST soot generator. The VARIAnT research program was devised to understand reported variability in the ARP6320A sampling system nvPM measurements. The VARIAnT research program has conducted four test campaigns to date with the VARIAnT 3 and 4 campaigns devoted to: (1) assessing the response of three different black carbon mass analyzers to particles of different size, morphology, and chemical composition; (2) characterizing the particles generated by 6 different combustion sources according to morphology, effective density, and chemical composition; and (3) assessing any significant difference between black carbon as determined by the 3 mass analyzers and the total PM determined via other techniques. Results from VARIAnT 3 and 4 campaigns revealed agreement of about 20% between the Micro-Soot Sensor, the Cavity Attenuated Phase Shift (CAPS PMSSA) monitor and the thermal-optical reference method for elemental carbon (EC) mass, independent of the calibration source used. For the LII-300, the measured mass concentrations in VARIAnT 3 fall within 18% and in VARIAnT 4 fall within 27% of the reference EC mass concentration when calibrated on a combustor rig in VARIAnT 3 and on an LGT-60 start cart in VARIAnT 4, respectively. It was also found that the three mass instrument types (MSS, CAPS PMSSA, and LII-300) can exhibit different BC to reference EC ratios depending on the emission source that appear to correlate to particle geometric mean mobility diameter, morphology, or some other parameter associated with particle geometric mean diameter (GMD) with the LII-300 showing a slightly stronger apparent trend with GMD. Systematic differences in LII-300 measured mass concentrations have been reduced by calibrating with a turbine combustion as a particle source (combustor or turbine engine). With respect to the particle size measurements, the sizing instruments (TSI SMPS, TSI EEPS, and Cambustion DMS 500) were found to be in general agreement in terms of size distributions and concentrations with some exceptions. Gravimetric measurements of the total aerosol mass produced by the various DFCAs differed from the reference EC, BC and integrated particle size distribution measured aerosol masses. The measurements of particle size distributions and single particle analysis performed using the miniSPLAT indicated the presence of larger particles (≳150 nm) having more compact morphologies, higher effective density, and a composition dominated by OC and containing ash. This increased large particle fraction is also associated with higher values of single scattering albedo measured by the CAPS PMSSA instrument and higher OC measurements. These measurements indicate gas turbine engine emissions can be a more heterogeneous mix of particle types beyond the original E-31 assumption that engine exit exhaust particles are mainly composed of black carbon.

8.
Inhal Toxicol ; 36(5): 314-326, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38145546

RESUMEN

Rivers State, Niger Delta, Nigeria often referred to as the 'treasure bed of the nation' is the seat of crude oil production activities with the accompanying environmental degradation. The severity of the environmental pollution and contaminated air quality took a new turn for the worse in November 2016, when the residents of Port Harcourt city, Rivers State, a major oil producing State experienced for the first time, aerosol deposition of plumes of black soot. This systematic review paper is aimed at quantifying the severity of this public health challenge. Using appropriate search words, the following databases SCOPUS, PUBMED, Google Scholar, and AJOL were searched from 1990 to 2022 to enable comparative analyses of data before and after the emergence of black soot deposition. Air-related morbidities and mortalities such as cerebrospinal meningitis (CSM), chronic bronchitis, measles, pertussis, hemoptysis, cough, pulmonary tuberculosis, pneumonia, and upper respiratory tract infection (URTI), pneumonia, eye irritation, conjunctivitis, traumatic skin outgrowth, cancers, cardiovascular diseases, and child deformities were compared with levels of air pollutants and particulate matter. The results showed that Port Harcourt city's ambient air quality data were above the standard National Ambient Air Quality data and that of other regulatory agencies having higher levels of both inorganic and organic pollutants. There were significant relationships between air pollutants concentration with morbidities. These correlations were significant in the period covering 2016-2022. Consequently, it is concluded that the black soot emissions in Port Harcourt city, Nigeria has worsened the public health situation in the city.


Asunto(s)
Contaminantes Atmosféricos , Salud Pública , Hollín , Nigeria/epidemiología , Humanos , Hollín/análisis , Hollín/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
9.
J Appl Toxicol ; 44(8): 1269-1278, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705171

RESUMEN

In urban areas, inhalation of fine particles from combustion sources such as diesel engines causes adverse health effects. For toxicity testing, a substantial amount of particulate matter (PM) is needed. Conventional sampling involves collection of PM onto substrates by filtration or inertial impaction. A major drawback to those methodologies is that the extraction process can modify the collected particles and alter their chemical composition. Moreover, prior to toxicity testing, PM samples need to be resuspended, which can alter the PM sample even further. Lastly, the choice of the resuspension medium may also impact the detected toxicological responses. In this study, we compared the toxicity profile of PM obtained from two alternative sampling systems, using in vitro toxicity assays. One system makes use of condensational growth before collection in water in an impinger - BioSampler (CG-BioSampler), and the other, a Dekati® Gravimetric Impactor (DGI), is based on inertial impaction. In addition, various methods for resuspension of DGI collected PM were compared. Tested endpoints included cytotoxicity, formation of cellular reactive oxygen species, and genotoxicity. The alternative collection and suspension methods affected different toxicological endpoints. The water/dimethyl sulfoxide mixture and cell culture medium resuspended particles, along with the CG-BioSampler sample, produced the strongest responses. The water resuspended sample from the DGI appeared least toxic. CG-BioSampler collected PM caused a clear increased response in apoptotic cell death. We conclude that the CG-BioSampler PM sampler is a promising alternative to inertial impaction sampling.


Asunto(s)
Material Particulado , Emisiones de Vehículos , Material Particulado/toxicidad , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Células A549 , Tamaño de la Partícula , Contaminantes Atmosféricos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Pruebas de Toxicidad/métodos , Monitoreo del Ambiente/métodos , Suspensiones
10.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400449

RESUMEN

Measuring soot concentration in a burner flame is essential for an in-depth understanding of the formation mechanism and to abate its generation. This paper presents an improved emission spectroscopy (ES) method that uses an adaptive particle swarm optimization (APSO) algorithm for measuring the concentration of soot in methane burner flames. Experimental tests were conducted on a laboratory-scale facility under a methane flowrate ranging between 0.6 and 0.9 L/min. A comparison analysis of the soot concentration measured by the ES method, the improved emission spectroscopy (IES) method, and the thermocouple particle density (TPD) method (as a reference) was conducted. The ES method obtained a maximum absolute deviation of 0.84 ppm from the average soot concentration at the three measurement points compared to the TPD method, while that of the IES was only 0.09 ppm. The experimental results demonstrate that the proposed IES method can obtain a more accurate soot concentration of diffusion flames.

11.
J Environ Manage ; 367: 121895, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059310

RESUMEN

The article presents a method for obtaining catalytic systems: SiO2-Fe2O3, SiO2-Fe2O3-Fe and verification of their catalytic properties in the oxidation process of technical soot N550. The process of immobilization of Fe3+ ions on microsilica-SiO2 was investigated in the batch system (equilibrium, kinetics, thermodynamics). The process was aimed at obtaining a system with a developed surface and using less iron while maintaining the same catalysis active surface. In the next stages, the SiO2-Fe3+ systems were modified to obtain SiO2-Fe2O3 and SiO2-Fe2O3-Fe materials, which exhibited catalytic properties. To obtain catalytic systems, the processes of Fe3+ ions sorption, iron oxide precipitation - Fe2O3 and Fe reduction using a plant extract were used. Catalytic systems were applied in the N550 technical soot oxidation process to reduce the conversion temperature and increase its efficiency. The soot oxidation process was carried out in a muffle furnace using variable process parameters, i.e. temperature (450, 475, 500, 525 and 550oC), time (1, 2 and 3h), type of catalytic system (SiO2-Fe2O3, SiO2-Fe2O3-Fe) and its % content relative to the constant mass of soot (0, 10, 20 and 30%). The greatest increase in the conversion efficiency of soot particles was obtained using the SiO2-Fe2O3 system with a content of 20% at a temperature of 550oC and for 3 h.


Asunto(s)
Compuestos Férricos , Oxidación-Reducción , Dióxido de Silicio , Dióxido de Silicio/química , Compuestos Férricos/química , Catálisis , Hierro/química , Cinética
12.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999142

RESUMEN

Ba1-xCexMnO3 (BM-Cex) and Ba1-xLaxMn0.7Cu0.3O3 (BMC-Lax) perovskite-type mixed oxides were synthesized using the sol-gel method adapted for aqueous media with different values of x (0, 0.1, 0.3, 0.6) to estimate the effect of the degree of the partial substitution of Ba by Ce or La on the structure and properties that are relevant for their use as catalysts for gasoline direct injection (GDI) soot oxidation. The samples were deeply characterized by ICP-OES, XRD, XPS, N2 adsorption, H2-TPR, and O2-TPD, and their potential as catalysts for soot oxidation has been analyzed in various scenarios that replicate the exhaust conditions of a GDI engine. By comparing the catalytic performance for soot oxidation of the two tested series (BM-Cex and BMC-Lax) and in the two conditions used (100% He and 1% O2 in He), it could be concluded that (i) in the absence of oxygen in the reaction atmosphere (100% He), BMC-La0.1 is the best catalyst, as copper is also able to catalyze the soot oxidation; and (ii) if oxygen is present in the reaction atmosphere (1% O2/He), BM-Ce0.1 is the most-active catalyst as it presents a higher proportion of Mn(IV) than BMC-La0.1. Thus, it seems that the addition of an amount of Ce or La higher than that corresponding to x = 0.1 in Ba1-xCexMnO3 and Ba1-xLaxCu0.3Mn0.7O3 does not allow us to improve the catalytic performance of BM-Ce0.1 and BMC-La0.1 for soot oxidation in the tested conditions.

13.
Molecules ; 29(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474440

RESUMEN

In this study, we employed a straightforward flame synthesis process to produce carbon soot containing carbon nano onions (CNOs) using easily accessible ghee oil as a precursor. The ghee oil, with a molecular composition rich in more than 50 carbon atoms, served as an effective source for generating CNOs. The synthesized CNO particles underwent comprehensive characterization through high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses, providing a detailed account of their physicochemical properties. In addition, we explored the direct deposition of CNOs on carbon fiber (CF) surfaces for 5 and 10 min via a soot deposition process. The resulting freeze-fracture images obtained from scanning electron microscope (SEM) offered insights into the morphology of the CNO-deposited CF. Our study aims to shed light on the potential applications of CNOs, focusing on their characterization and the possible benefits they may offer in diverse fields, including but not limited to enhancing interfacial bonding in thermoplastic composites.

14.
Environ Manage ; 73(4): 788-800, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37993546

RESUMEN

Black carbon (BC) can comprise a significant fraction of the soil carbon pool in cities. However, vegetation cover and human activity influence the spatial distribution of urban soil BC. We quantified soil total carbon (TC), soil organic carbon (SOC), BC, and total nitrogen (TN) in a medium-sized city in Dallas-Fort Worth, Texas. Soils were sampled to 20 cm depth from underneath 16 paired Quercus stellata (post oak) trees and open lawns. Effects of vegetation cover, road density, and building age (a proxy for time since development) on soil C and N were analyzed. Soil OC concentrations were higher under post oak trees (5.5%) compared to open lawns (3.6%) at 0-10 cm, but not at 10-20 cm depth. In contrast, soil BC and TN did not differ by vegetation cover. There were significant interaction effects between vegetation cover and road density and vegetation cover and building age on soil BC. At 0-10 cm, soil BC concentrations, stock, and BC/SOC ratios increased more with road density under trees than lawns, indicating enhanced atmospheric BC deposition to tree canopies. Black carbon in tree soils also increased with building age as compared to lawn soils, likely due to higher BC retention under trees, enhanced BC losses under lawns, or both. Our findings show that urban tree soils are localized opportunity hotspots for BC storage in areas with elevated emissions and longer time since development. Conserving and planting urban trees above permeable surfaces and soils could contribute to long-term carbon storage in urban ecosystems.


Asunto(s)
Ecosistema , Quercus , Humanos , Árboles , Suelo , Carbono , Ciudades , Nitrógeno
15.
J Environ Sci (China) ; 138: 339-349, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135401

RESUMEN

In the quest for the development of thermally stable, highly active and low-cost catalysts for use in catalyzed diesel particulate filter, nano-composites are new areas of research. Therefore, we reported the easy synthesis of spinel NiCo2O4/perovskite LaCoO3 nano-composite, and its individual oxides NiCo2O4 and LaCoO3 for comparison. The detailed insights into the physio-chemical characteristics of formed NiCo2O4/ LaCoO3 nano-composite were done based on various characterization analysis such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), N2 physiosorption, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The characterization analysis of NiCo2O4/LaCoO3 revealed the successful formation of a chemical interface possessing strong interfacial interaction, resulting in desirable physicochemical characteristics such as small crystallite size, abundant mesoporosity, high specific surface area and activation of surface lattice oxygen. Owing to the desirable characteristics, the activity results over NiCo2O4/LaCoO3 nano-composite showed the excellent CO oxidation performance and high soot oxidation activity, recyclability and thermal stability. This work mainly attempts to emphasize the effectiveness of the facile, inexpensive and conventionally used precipitation method for the successful formation of highly efficient nano-composites.


Asunto(s)
Óxidos , Hollín , Espectroscopía Infrarroja por Transformada de Fourier , Óxidos/química
16.
Nanotechnology ; 34(50)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748450

RESUMEN

Photovoltaic device is highly dependent on the weather, which is completely ineffective on rainy days. Therefore, it is very significant to design an all-weather power generation system that can utilize a variety of natural energy. This work develops a water droplet friction power generation (WDFG)/solar-thermal power generation (STG) hybrid system. The WDFG consists of two metal electrodes and a candle soot/polymer composite film, which also can be regarded as a capacitor. Thus, the capacitor coupled power generation (C-WDFG) device can achieve a sustainable and stable direct-current (DC) output under continuous dripping without external conversion circuits. A single device can produce an open-circuit voltage of ca.0.52 V and a short-circuit current of ca.0.06 mA, which can be further scaled up through series or parallel connection to drive commercial electronics. Moreover, we demonstrate that the C-WDFG is highly compatible with the thermoelectric device. The excellent photothermal performance of soot/polymer composite film can efficiently convert solar into heat, which is then converted to electricity by the thermoelectric device. Therefore, this C-WDFG/STG hybrid system can work in both rainy and sunny days.

17.
Environ Sci Technol ; 57(46): 17718-17726, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36919346

RESUMEN

The heterogeneous oxidation of SO2 by NO2 has been extensively proposed as an important pathway of sulfate production during haze events in China. However, the kinetics and mechanism of oxidation of SO2 by NO2 on the surface of complex particles remain poorly understood. Here, we systematically explore the mechanism and kinetics of the reaction between SO2 and NO2 on diesel black carbon (DBC) under light irradiation. The experimental results prove that DBC photochemistry can not only significantly promote the heterogeneous reduction of NO2 to produce HONO via transferring photoinduced electrons but also indirectly promote OH radical formation. These reduction products of NO2 as well as NO2 itself greatly promote the heterogeneous oxidation of SO2 on DBC. NO2 oxidation, HONO oxidation, and the surface photo-oxidation process are proven to be three major surface oxidation pathways of SO2. The kinetics results indicate that the surface photooxidation pathway accounts for the majority of the total SO2 uptake (∼63%), followed by the HONO oxidation pathway (∼27%) and direct oxidation by NO2 (∼10%). This work highlights the significant synergistic roles of DBC, NO2, and light irradiation in enhancing the atmospheric oxidation capacity and promoting the heterogeneous formation of sulfate.


Asunto(s)
Dióxido de Nitrógeno , Óxidos de Azufre , China , Oxidación-Reducción , Hollín , Sulfatos , Carbono
18.
Environ Sci Technol ; 57(28): 10276-10283, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37406187

RESUMEN

Soot from jet fuel combustion in aircraft engines contributes to global warming through the formation of contrail cirrus clouds that make up to 56% of the total radiative forcing from aviation. Here, the elimination of such emissions is explored through N2 injection (containing 0-25 vol % O2) at the exhaust of enclosed spray combustion of jet fuel that nicely emulates aircraft soot emissions. It is shown that injecting N2 containing 5 vol % of O2 enhances the formation of polyaromatic hydrocarbons (PAHs) that adsorb on the surface of soot. This increases soot number density and volume fraction by 25 and 80%, respectively. However, further increasing the O2 concentration to 20 or 25 vol % enhances oxidation and nearly eliminates soot emissions from jet fuel spray combustion, reducing the soot number density and volume fraction by 87.3 or 95.4 and 98.3 or 99.6%, respectively. So, a judicious injection of air just after the aircraft engine exhaust can drastically reduce soot emissions and halve the radiative forcing due to aviation, as shown by soot mobility, X-ray diffraction, Raman spectroscopy, nitrogen adsorption, microscopy, and thermogravimetric analysis (for the organic to total carbon ratio) measurements.


Asunto(s)
Aviación , Hollín , Hollín/análisis , Hidrocarburos/análisis , Aeronaves , Emisiones de Vehículos/análisis
19.
Environ Sci Technol ; 57(51): 21593-21604, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37955649

RESUMEN

Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Humanos , Compuestos Policíclicos/análisis , Hollín/análisis , Hollín/química , Hollín/toxicidad , Espectrometría de Masas en Tándem , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pulmón , Oxígeno/análisis , Metaboloma , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis
20.
Environ Sci Technol ; 57(13): 5137-5148, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36944040

RESUMEN

Effective density (ρeff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρeff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρeff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.


Asunto(s)
Atmósfera , Hollín , Humanos , Anciano , Hollín/análisis , Hollín/química , Tamaño de la Partícula , Carbón Mineral , Aerosoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA